Difference between revisions of "Team:SDU-Denmark/testvyff"

 
(12 intermediate revisions by the same user not shown)
Line 55: Line 55:
  
 
<div class="row"><div class="col-xs-12">
 
<div class="row"><div class="col-xs-12">
 +
<div style="text-align:center;"><object class="highlighted-image" data="https://static.igem.org/mediawiki/2017/archive/f/fd/20171030103312%21T--SDU-Denmark--modelling-graph-dormancy_variation.svg" type="image/svg+xml" style="width:100%;"></object></div><br>
 +
<div style="text-align:center;"><object class="highlighted-image" data="https://static.igem.org/mediawiki/2017/4/47/T--SDU-Denmark--Flow-celle2.svg" type="image/svg+xml" style="width:100%;"></object></div>
 +
 
<p>
 
<p>
 
<table>
 
<table>
Line 169: Line 172:
  
 
     <p> In order to find the best way to implement the toxin-antitoxin system, we resort to modelling. We use the <span class="btn-link btn-lg" data-toggle="modal" data-target="#gillespie-algorithm">gillespie algorithm</span> to model the interactions of the <span class="btn-link btn-lg" data-toggle="modal" data-target="#toxin-antitoxin-system">toxin antitoxin system</span>.<br>
 
     <p> In order to find the best way to implement the toxin-antitoxin system, we resort to modelling. We use the <span class="btn-link btn-lg" data-toggle="modal" data-target="#gillespie-algorithm">gillespie algorithm</span> to model the interactions of the <span class="btn-link btn-lg" data-toggle="modal" data-target="#toxin-antitoxin-system">toxin antitoxin system</span>.<br>
 +
<span class="btn-link btn-lg" data-target="#https://static.igem.org/mediawiki/2017/1/1e/Matlab-scripts_SDU.zip">toxin antitoxin system</span>.<br>
 
<object class="highlighted-image" data="https://static.igem.org/mediawiki/2017/6/61/T--SDU-Denmark--modelling-figure-2-rele-relb.svg" type="image/svg+xml" style="width:100%;"></object>
 
<object class="highlighted-image" data="https://static.igem.org/mediawiki/2017/6/61/T--SDU-Denmark--modelling-figure-2-rele-relb.svg" type="image/svg+xml" style="width:100%;"></object>
 
We find that when we implement enhanced relE production as a tool to make the bacteria dormant, an additional implementation of relB to ensure don’t stay dormant when in light again.  
 
We find that when we implement enhanced relE production as a tool to make the bacteria dormant, an additional implementation of relB to ensure don’t stay dormant when in light again.  
Line 197: Line 201:
 
</ol>
 
</ol>
 
<p>For each time step two things are calculated, using the random number generator: The time before next reaction and which reaction occurs.  
 
<p>For each time step two things are calculated, using the random number generator: The time before next reaction and which reaction occurs.  
The time before next step is given by <br>
+
The time before next step is given by </p><br>
<i>( Figure (well... equation): reaction time insert here (tex doc))</i><br>
+
 
 +
<div style="text-align:center;"><p> Hello Emil</p></div><br>
 +
 
 +
<p>
 
Where S is the sum of the reaction rates and r1 is a random number between 0 and 1. This gives the time as if the system was one reaction with reaction rate S, using the random number to give a statistic distribution.  
 
Where S is the sum of the reaction rates and r1 is a random number between 0 and 1. This gives the time as if the system was one reaction with reaction rate S, using the random number to give a statistic distribution.  
 
The reaction is chosen proportionally to each individual reaction rate, using another random number. This way, reaction with high rates compared to other reactions will happen the most.  
 
The reaction is chosen proportionally to each individual reaction rate, using another random number. This way, reaction with high rates compared to other reactions will happen the most.  
Line 242: Line 249:
 
<span class="reference"><span class="referencetext"><a target="blank" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413109/">Cataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297</a></span></span>.
 
<span class="reference"><span class="referencetext"><a target="blank" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413109/">Cataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297</a></span></span>.
 
</p><br>
 
</p><br>
<object class="highlighted-image" data="https://static.igem.org/mediawiki/2017/9/91/T--SDU-Denmark--modelling-figure-1-rele-relb.svg" type="image/svg+xml" style="width:100%;"></object>
+
<object class="highlighted-image" data="https://static.igem.org/mediawiki/2017/c/c5/T--SDU-Denmark--Flow-celle1.svg" type="image/svg+xml" style="width:100%;"></object>
  
  

Latest revision as of 23:01, 1 November 2017

Modelling



Constant Identifier Units Value
mrna transcription rateCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 α0 1/min 154.665
mrna half lifeCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 τm min 7.2
RelB half lifeCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297Overgaard M., Borch J., Gerdes K. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J. Mol. Biol. 2009;394:183–196. doi: 10.1016/j.jmb.2009.09.006 τB min 4.3
RelE half lifeCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 τE min 43 (growing)
2000 (dormant)
Bound RelB half lifeCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297Overgaard M., Borch J., Gerdes K. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J. Mol. Biol. 2009;394:183–196. doi: 10.1016/j.jmb.2009.09.006 τc min 17
RelB transcription rateCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 transB 1/min 15
RelE transcription rateCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 transE 1/min 0.3
Binding rateSneppen K, Zocchi G. Physics in Molecular Biology. Cambridge, UK: Cambridge University Press; 2005. k b 1/min 3.8
Dissociation rate B2EOvergaard, M., Borch, J., Jørgensen, M. G. and Gerdes, K. (2008), Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Molecular Microbiology, 69: 841–857. doi:10.1111/j.1365-2958.2008.06313.x KD (B2E) molecules 0.3
Dissociation rate B2E2Overgaard, M., Borch, J., Jørgensen, M. G. and Gerdes, K. (2008), Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Molecular Microbiology, 69: 841–857. doi:10.1111/j.1365-2958.2008.06313.x KD(B2E2) molecules 0.3
Dissociation rate O.BfGotfredsen, M. and Gerdes, K. (1998), The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family. Molecular Microbiology, 29: 1065–1076. doi:10.1046/j.1365-2958.1998.00993.xCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 KD1 molecules 10
Dissociation rate O.B2EGotfredsen, M. and Gerdes, K. (1998), The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family. Molecular Microbiology, 29: 1065–1076. doi:10.1046/j.1365-2958.1998.00993.xCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 KD2 molecules 0.04
Dissociation rate O.(B2E)2Gotfredsen, M. and Gerdes, K. (1998), The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family. Molecular Microbiology, 29: 1065–1076. doi:10.1046/j.1365-2958.1998.00993.xCataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 KD3 molecules 30
Cleavage ratePedersen K, et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell. 2003;112:131–140. doi: 10.1016/S0092-8674(02)01248-5 Cataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297 kc 1/min 1/molecules 2.0


In order to find the best way to implement the toxin-antitoxin system, we resort to modelling. We use the gillespie algorithm to model the interactions of the toxin antitoxin system.
toxin antitoxin system.
We find that when we implement enhanced relE production as a tool to make the bacteria dormant, an additional implementation of relB to ensure don’t stay dormant when in light again.
The model found that the system is sensitive to the relE:relB ratio as well as the total production, and that an implementation with production rates in the vicinity of 50 and 35 molecules pr. min for relB and relE respectively yields close to the wished for effect: THe bacteria goes dormant in an hour and wakes up quickly.