Difference between revisions of "Team:IIT Delhi/Design"

 
(35 intermediate revisions by 7 users not shown)
Line 205: Line 205:
  
 
h1 a, h2 a, h3 a, h4 a, h5 a, h6 a {
 
h1 a, h2 a, h3 a, h4 a, h5 a, h6 a {
color: inherit;
+
color: #0f75db;
 
text-decoration: none;
 
text-decoration: none;
 
}
 
}
Line 813: Line 813:
  
 
table tbody tr:nth-child(2n + 1) {
 
table tbody tr:nth-child(2n + 1) {
background-color: #000;
+
background-color: #fcfcfc;
 
}
 
}
  
Line 823: Line 823:
 
padding: 0em 0em;
 
padding: 0em 0em;
 
}
 
}
 
+
.table1 td {
 +
padding: 0em 0em;
 +
                        color: #000;
 +
                       
 +
}
 
table th {
 
table th {
 
color: #666;
 
color: #666;
Line 1,115: Line 1,119:
 
#banner {
 
#banner {
 
background: url("https://static.igem.org/mediawiki/2017/8/8d/T--IIT_DELHI--banner_index.jpg") ;
 
background: url("https://static.igem.org/mediawiki/2017/8/8d/T--IIT_DELHI--banner_index.jpg") ;
 
 
background-position: center;
 
background-position: center;
 
background-repeat: no-repeat;
 
background-repeat: no-repeat;
background-size: 100% 100% ;
+
background-size: 100% ;
                
+
               padding-bottom: 150px;
 
color: #ffffff;
 
color: #ffffff;
padding: 27.5em 0em 1em;
+
                padding: 27.5em 0em 1em;
 
text-align: center;
 
text-align: center;
  
Line 1,284: Line 1,287:
 
}
 
}
  
 
+
.centered { text-align: left; list-style-position:inside;}
  
 
.toppad
 
.toppad
Line 1,344: Line 1,347:
 
     z-index: 101;
 
     z-index: 101;
 
}
 
}
 +
.dropbtn2 {
 +
    font-size: 16px;   
 +
    border: none;
 +
    outline: none;
 +
    color: white;
 +
    padding: 15px 16px;
 +
    background-color: #000;
 +
    background-size: 100% 100%;
 +
    z-index: 101;
 +
}
 +
  
 
.navbar a:hover, .dropdown:hover .dropbtn {
 
.navbar a:hover, .dropdown:hover .dropbtn {
Line 1,561: Line 1,575:
 
<div class = "navbar ">
 
<div class = "navbar ">
 
 
                                                         <button class="dropbtn1"><a href="https://2017.igem.org/Team:IIT_Delhi">iGEM IIT Delhi</a></button>
+
                                                         <button class="dropbtn2"><a href="https://2017.igem.org/Team:IIT_Delhi">iGEM IIT Delhi</a></button>
<div class = "right_menu">
+
        <div class = "right_menu">
 
   <div class="dropdown">
 
   <div class="dropdown">
 
     <button class="dropbtn">Project  
 
     <button class="dropbtn">Project  
Line 1,568: Line 1,582:
 
     </button>
 
     </button>
 
     <div class="dropdown-content">
 
     <div class="dropdown-content">
       <a href="/Team:IIT_Delhi/Description">Description</a>
+
       <a href="/Team:IIT_Delhi/Description">Overview</a>
       <a href="/Team:IIT_Delhi/Results">Results</a>
+
       <a href="/Team:IIT_Delhi/Design">Squarewave Generator</a>
  
       <a href="/Team:IIT_Delhi/Interlab">Interlab</a>
+
       <a href="/Team:IIT_Delhi/InterLab">Interlab</a>
 
     </div>
 
     </div>
 
   </div>  
 
   </div>  
 
                                                         <div class="dropdown">
 
                                                         <div class="dropdown">
 +
    <button class="dropbtn">Results
 +
    <i class="fa fa-caret-down"></i>
 +
    </button>
 +
    <div class="dropdown-content">
 +
      <a href="/Team:IIT_Delhi/Circuit_Design">Circuit design and construction</a>
 +
      <a href="/Team:IIT_Delhi/Microfluidics">Microfluidics and Fluorescence</a>
 +
      <a href="/Team:IIT_Delhi/Photobleaching">Photobleaching</a>
 +
      <a href="/Team:IIT_Delhi/Promoter">Promoter strength</a>
 +
                                                      <a href="/Team:IIT_Delhi/Oscillations">Oscillations</a>
 +
                                                     
 +
    </div>
 +
  </div>
 +
 +
                                                          <div class="dropdown">
 
     <button class="dropbtn">Parts  
 
     <button class="dropbtn">Parts  
 
     <i class="fa fa-caret-down"></i>
 
     <i class="fa fa-caret-down"></i>
Line 1,583: Line 1,611:
 
       <a href="/Team:IIT_Delhi/Improved_Part">Improved Parts</a>
 
       <a href="/Team:IIT_Delhi/Improved_Part">Improved Parts</a>
 
       <a href="/Team:IIT_Delhi/Part_Collection">Part Collection</a>
 
       <a href="/Team:IIT_Delhi/Part_Collection">Part Collection</a>
 +
                                                     
 
     </div>
 
     </div>
 
   </div>
 
   </div>
 +
 
   <div class="dropdown">
 
   <div class="dropdown">
 
     <button class="dropbtn">Modeling
 
     <button class="dropbtn">Modeling
Line 1,591: Line 1,621:
 
     <div class="dropdown-content-big">
 
     <div class="dropdown-content-big">
 
       <a href="/Team:IIT_Delhi/Model">Overview</a>
 
       <a href="/Team:IIT_Delhi/Model">Overview</a>
       <a href="/Team:IIT_Delhi/Database">Simulation Database</a>
+
       <a href="/Team:IIT_Delhi/Write_Model">Writing a Model</a>
 +
                                                        <a href="/Team:IIT_Delhi/Deterministic_Model">Deterministic Model </a>
 +
                                                        <a href="/Team:IIT_Delhi/Stochastic_Model">Stochastic Model</a>
 +
                                                        <a href="/Team:IIT_Delhi/Bifurcation">Bifurcation and Squareness</a>
 +
                                                        <a href="/Team:IIT_Delhi/Resources">Resource sharing</a>
 
     </div>
 
     </div>
 
     </div>
 
     </div>
Line 1,603: Line 1,637:
 
       <a href="/Team:IIT_Delhi/Engagement">Public Engagement</a>
 
       <a href="/Team:IIT_Delhi/Engagement">Public Engagement</a>
 
       <a href="/Team:IIT_Delhi/Collaborations">Collaborations</a>
 
       <a href="/Team:IIT_Delhi/Collaborations">Collaborations</a>
 +
                                                        <a href="/Team:IIT_Delhi/Safety">Safety</a>
 
     </div>
 
     </div>
 
   </div>  
 
   </div>  
 +
 +
                                                        <div class="dropdown">
 +
    <button class="dropbtn">Collaborations
 +
    <i class="fa fa-caret-down"></i>
 +
    </button>
 +
    <div class="dropdown-content">
 +
                                                        <a href="/Team:IIT_Delhi/Collaborations">Overview</a>
 +
      <a href="/Team:IIT_Delhi/GMM_legislation">GMM Legislation</a>
 +
      <a href="/Team:IIT_Delhi/berlin">iGEM Berlin</a>
 +
      <a href="/Team:IIT_Delhi/mohali">Mentoring IISER Mohali</a>
 +
      <a href="/Team:IIT_Delhi/glasgow">iGEM Glasgow</a>
 +
             
 +
    </div>
 +
  </div> 
 
   <div class="dropdown">
 
   <div class="dropdown">
 
     <button class="dropbtn">Notebook  
 
     <button class="dropbtn">Notebook  
Line 1,632: Line 1,681:
  
 
 
+
<br>
  
 
<!-- Banner -->
 
<!-- Banner -->
Line 1,640: Line 1,689:
 
</section>
 
</section>
  
+
  
  
Line 1,648: Line 1,697:
 
          
 
          
 
          
 
          
             <h2 class="h2font">ATTRIBUTIONS</h2>
+
             <h2 class="h2font">Introduction</h2>
  
 
             <p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
             <p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Line 1,657: Line 1,706:
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
  </p>
 
  </p>
<div align="left" style="font-size: 84%;" class="padding1">
+
<h2 id="pfont">Several circuits have been proposed, constructed, and implemented, leading to landmark discoveries in synthetic biology. These include systems such as the bi-stable toggle switch, and the repressilator, which brought about a paradigm shift in the field. Since then, several systems have been constructed to employ memory modules, create counters, adders, digital biosensors, and a whole wide range of other products.
<left>
+
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/b/b4/T--IIT_Delhi--Dr.Zia_Shaikh.jpg" alt="" /></span><b id="pfont2">Dr. Zia Shaikh</b><br> Dr. Zia Shaikh is an assistant professor at DBEB, IIT Delhi and is the Professor-in-charge at iGEM IIT Delhi. He has been associated with the team since the past 3 years and has played a vital role in ensuring smooth functioning of the team. He provided us with a well-furnished lab for our project and was instrumental in getting funds for our team. Also, he helped us in the various aspects of our project, despite it not being his core area of research.
+
<br><br>
</h2>
+
<img src = "https://static.igem.org/mediawiki/2017/a/a8/T--IIT_Delhi--Project_Square_Wave_generator-picture_1.jpg" style='border:3px solid #000000' width = 80%><br>
<h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/b/b6/T--IIT_Delhi--Dr._Stefan_Oehler.jpg" alt="" style="height:200% ; width:150%"/></span><b id="pfont2">Dr. Stefan</b><br> Dr. Stefan is a visiting faculty, from Germany, at DBEB, IIT Delhi. He has been a guiding light for iGEM IIT Delhi since 2015. Even though he is a specialist in Molecular Biology, he was instrumental in our project’s computational analysis as well as team organization and management. He spent countless nights helping us troubleshoot our project and enabled us to present our project in a more detailed manner.
+
</h2>
+
  
</left>
+
<h6>Figure – A brief timeline of major notable events in the creation and development of synthetic biology (Source: Del Vecchio, Domitilla et al, Journal of The Royal Society Interface 13.120 (2016): 20160380.)</h6><br>
</div>
+
<h2 id="pfont">However, there are several limitations that still need to be overcome, as the field continues to make strides in every area. These involve the fact that biological systems have a lot of noises that cannot be modeled accurately to date, and the fact that metabolic burden is a major issue. Along these lines, one of the central issues is the distinct lack of digital responses in synthetic biology. <br>
 +
 
 +
Thus, as described in the project overview, we wished to use the high cooperativity TetR homologs in such a manner so as to generate a square wave oscillator circuit. Such a system could have a whole multitude of applications; some of which were mentioned briefly in the overview, and the same are also discussed below,
 +
 +
</h2></header>
 +
 
 +
<header class="major">
 +
       
 +
       
 +
            <h2 class="h2font">Applications</h2>
 +
<p>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
</p>
 +
       
 
           </header>
 
           </header>
           <button class="accordion back1" style="font-weight: bold;">Project Advisors:</button>
+
           <button class="accordion back1" style="font-weight: bold;">Generating a clock input to time biological events</button>
 
           <div class="panel ">
 
           <div class="panel ">
           
+
         
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
  
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
<left>
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/b/b4/T--IIT_Delhi--Dr.Zia_Shaikh.jpg" alt="" /></span><b id="pfont2">Dr. Zia Shaikh</b><br> Dr. Zia Shaikh is an assistant professor at DBEB, IIT Delhi and is the Professor-in-charge at iGEM IIT Delhi. He has been associated with the team since the past 3 years and has played a vital role in ensuring smooth functioning of the team. He provided us with a well-furnished lab for our project and was instrumental in getting funds for our team. Also, he helped us in the various aspects of our project, despite it not being his core area of research.
+
<h2 id="pfont1">The potential of genetic clock lies in its role to triggering logic reaction for sequential biological circuits. A square wave generator could be used as a genetic clock, since square waves lie at the heart of clocks. Further, these clocks could be used in any cellular system to time particular events.  
 
</h2>
 
</h2>
<h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/b/b6/T--IIT_Delhi--Dr._Stefan_Oehler.jpg" alt="" style="height:200% ; width:150%"/></span><b id="pfont2">Dr. Stefan</b><br> Dr. Stefan is a visiting faculty, from Germany, at DBEB, IIT Delhi. He has been a guiding light for iGEM IIT Delhi since 2015. Even though he is a specialist in Molecular Biology, he was instrumental in our project’s computational analysis as well as team organization and management. He spent countless nights helping us troubleshoot our project and enabled us to present our project in a more detailed manner.
+
</h2>
+
 
+
 
</left>
 
</left>
 
</div>
 
</div>
  
 
<br>
 
<br>
<div align="left" style="font-size: 84%;">
 
 
</div>
 
 
            </p>
 
 
           </div>
 
           </div>
  
          <button class="accordion back2" style="font-weight: bold;">Professors:</button>
+
<button class="accordion back2" style="font-weight: bold;">Characterising gene regulatory network nodes through impulses</button>
           <div class="panel">
+
           <div class="panel ">
 
+
         
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
  
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
<left>
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/b/b7/T--IIT_Delhi--Prof.Atul_Narang.jpg" alt="" /></span><b id="pfont2">Prof. Atul Narang (DBEB)</b><br> Dr. Atul Narang is the Head of Department of Department of Biochemical Engineering and Biotechnology (DBEB), IIT Delhi. He has supported us remarkably in terms of the lab space, resources and facilities.
+
<h2 id="pfont1">This could be used to study correlation between two genes, by coupling one of the genes to the oscillator, then observe the dynamics of the second gene. In this manner, the effect of one gene on the others could be studied.
 
</h2>
 
</h2>
<h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/b/ba/T--IIT_Delhi--Prof.Shaunak_Sen.jpg" alt="" /></span><b id="pfont2">Prof.Shaunak Sen (Department of Electrical Engineering)</b><br> Prof. Shaunak Sen has assisted us profoundly with Microscopes, Plate-readers, and protocols. We would also like to thank him for his valuable advices on the idea Square Wave Generator, especially during the brainstorming sessions at the beginning.
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/4/40/T--IIT_Delhi--Dr.Prof.James_Gomes.jpg" alt="" /></span><b id="pfont2">Prof. James Gomes (Kusuma School of Biological Sciences)</b><br> We would like to greatly acknowledge Prof. James Gomes for his invaluable guidance towards the idea of the project. He has also assisted us with mathematical analysis, design and construction and possible topologies of the project.
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/c/c6/T--IIT_Delhi--Prof.Ravi_Elangovan.jpg" alt="" /></span><b id="pfont2">Prof. Ravi Elangovan (DBEB)</b><br> Prof. Ravi Elangovan gave us insight to High resolution Methods in Biotech, he was always available after classes to discuss and help us out with the doubts and difficulties.
+
He also helped us understand the basics of fluorescence microscopy  which turned out to be useful for the project.
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/d/d8/T--IIT_Delhi--Dr.Vivekanandan_Perumal.jpg" alt="" /></span><b id="pfont2">Dr.Vivekanandan Perumal ( Kusuma School of Biological Sciences)</b><br> Dr. Vivekanandan is an assistant professor at KSBS, IIT Delhi. He helped us in developing our cloning strategy and provided us with various lab equipments at crucial times.
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/e/e6/T--IIT_Delhi--Dr.Ashish_Misra.jpg" alt="" /></span><b id="pfont2">Dr.Ashish Misra (DBEB)</b><br> Dr. Ashish Misra is an assistant professor at DBEB, IIT Delhi and is a Professor mentor at iGEM IIT Delhi. He joined the team in 2016 and has helped us in troubleshooting our project and gaining more insight into it.
+
</h2>
+
                                                        <h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/0/0f/T--IIT_Delhi--Prof.Sumeet_Agrawal.jpg" alt="" /></span><b id="pfont2">Dr.Sumeet Agarwal</b><br>Dr.Sumeet Agarwal is an assistant professor in Department of Electrical Engineering, IIT Delhi. He has been pivotal as far as the guidance of System Biology was concerned.
+
</h2>
+
 
+
 
</left>
 
</left>
 
</div>
 
</div>
  
 
<br>
 
<br>
<div align="left" style="font-size: 84%;">
 
 
</div>
 
 
            </p>
 
 
           </div>
 
           </div>
  
<button class="accordion back3" style="font-weight: bold;">PhD. Researchers:</button>
 
          <div class="panel">
 
  
<!--<u><b><h4 id="pfont" style="font-size: 90%;"></h4></b></u>-->
+
<button class="accordion back3" style="font-weight: bold;">Periodic Drug delivery</button>
 +
          <div class="panel ">
 +
         
  
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
<left>
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/7/71/T--IIT_Delhi--Anamika_Chauhan.jpg" alt="" /></span><b id="pfont2">Ms.Anamika Chauhan</b><br> Ms. Anamika is a PhD student at DBEB, IIT Delhi and has been a part of team iGEM IIT Delhi since 2015. She was crucial to our Wet Lab experiments and troubleshooting and helped us improve our lab procedures. Moreover, she has been very supportive at crucial moments faced during the project.
+
<h2 id="pfont1">Like diabetic patients, insulin needs to be provided externally through injections or other means. Our oscillator system could be used as a patch containing bacteria that are oscillating to produce square levels of insulin to the patient once. This then would deliver insulin automatically at intervals, guided by our system .Further when the requirement for insulin would be high, the amount of insulin being delivered to them could be changed through some source which could dive a change in frequency of the oscillations (future applications could be focused on engineering frequency modulation).
 
</h2>
 
</h2>
<h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/f/f8/T--IIT_Delhi--Saurabh_Parikh.jpg" alt="" /></span><b id="pfont2">Mr. Saurabh Parikh</b><br> Saurabh Parikh is a fourth year B-tech student from DBEB. He helped us right from introducing to the field of Microfluidics to designing, constructing, using microfluidic chambers. We really appreciate his remarkable support for the project.
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/9/95/T--IIT_Delhi--Omkar_Vinchure.jpg" alt="" /></span><b id="pfont2">Mr.Omkar Vinchure</b><br> Mr. Omkar is a PhD student at DBEB, IIT Delhi and has been a mentor for iGEM IIT Delhi since 2015. He assisted us in performing advanced lab procedures and guided us throughout the whole project. He also played a crucial role in the team selection. Moreover, he allowed us access to his lab facilities, especially, the Nikon Eclipse Ti-S Fluorescence Microscope.
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/f/fd/T--IIT_Delhi--Arun_Thappa.jpg" alt="" /></span><b id="pfont2">Mr. Arun Thapa</b><br> Mr. Arun is a Phd student at DBEB, IIT Delhi and has been a mentor for iGEM IIT Delhi since 2016. He played a significant role in Wet lab experiments and troubleshooting and gave us crucial advices at critical times.
+
</h2>
+
 
+
 
</left>
 
</left>
 
</div>
 
</div>
  
 
<br>
 
<br>
<div align="left" style="font-size: 84%;">
 
 
</div>
 
 
            </p>
 
 
           </div>
 
           </div>
 
+
<button class="accordion back4" style="font-weight: bold;">Metabolic Switching</button>
<button class="accordion back4" style="font-weight: bold;">Assistance from various Labs:</button>
+
           <div class="panel ">
           <div class="panel">
+
         
 
+
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
  
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
<left>
  
<h2 id="pfont1"><b id="pfont2">UG Lab</b><br> Mr.Gulshan is the Lab Assistant of the Undergrad Lab, he has played a crucial role in terms of providing lab facilities and access throughout the entire tenure of the project.
+
<h2 id="pfont1">A bacterial species could be engineered to produce levels of the permease for a particular sugar in the form of a square wave. Thus, at varying intervals of time, the permease (say lac permease) would be expressed, which would cause the bacteria to start metabolizing lactose. When it goes off, the bacteria would not express the lac permease and consume glucose. In this manner, we could tune the frequency of the oscillations to ensure metabolic switching and activation of pathway shunts in the manner that we want.
 
</h2>
 
</h2>
<h2 id="pfont1"><b id="pfont2">Mr. K Vinay (RNA-2 lab)</b><br> Being a former iGEM member of 2015 and 2016 iGEM IIT Delhi team, he was exploring Pastures anew, despite nearing the end of his academic tenure at the institute, he was always available for brainstorming and troubleshooting sessions. We would like to thank him for his valuable advice and support. 
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><b id="pfont2">DyCoBS</b><br> Mr. Venkat and Mr. Abhishek have assisted us in this lab.
+
</h2>
+
 
+
                                                        <h2 id="pfont1"><b id="pfont2">Molecular Motors Lab</b><br> Mr. Sourabh Parikh helped us when we needed access to molecular motors lab.
+
</h2>
+
 
+
 
</left>
 
</left>
 
</div>
 
</div>
  
 
<br>
 
<br>
<div align="left" style="font-size: 84%;">
 
 
</div>
 
 
            </p>
 
 
           </div>
 
           </div>
  
<button class="accordion back1" style="font-weight: bold;">Central Workshop, IIT Delhi:</button>
+
<button class="accordion back1" style="font-weight: bold;">Temporal Barcodes</button>
           <div class="panel">
+
           <div class="panel ">
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
         
  
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
<left>
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/2/27/T--IIT_Delhi--Central_Workshop_IIT_Delhi.jpg" alt="" /></span><b id="pfont2">Mr.Balbir Singh</b><br> Mr. Balbir is the lab-in-charge at Laser and 3-D Printing Lab at IIT Delhi. He provided us with access to his lab and was pivotal to the laser-etching which was used in the Microfluidic Chamber. Epilog LASER FUSION M2™, used for laser etching, was managed by him as well.
+
<h2 id="pfont1">If we can control the frequency of the oscillations and modulate the time spent by the wave in the ON and OFF state (which is basically a function of the frequency itself), we could generate a combination of 0’s and 1’s, in order to generate a bar code. This bar code would be read in time, and therefore would be a temporal bar code. A typical example of this would be to encode the word “iGEM” by 11001001, where 1 represents an ON state for say, 20 minutes. Thus, an 11 response, which represents the letter i, would then be read if the fluorescence stays on for 40 minutes. In this fashion, our device could be used for encryption of data.  
 
</h2>
 
</h2>
 
 
Line 1,805: Line 1,808:
  
 
<br>
 
<br>
<div align="left" style="font-size: 84%;">
 
 
</div>
 
 
            </p>
 
 
           </div>
 
           </div>
  
<button class="accordion back2" style="font-weight: bold;" >iGEM Team Glasgow:</button>
+
<button class="accordion back2" style="font-weight: bold;">For memory storage</button>
           <div class="panel">
+
           <div class="panel ">
 
+
         
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
  
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
<left>
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/b/bb/T--IIT_Delhi--Glassgow.jpg" alt="" /></span> <br> We would like to express our special gratitude towards iGEM Glasgow team for providing the biological parts ( pPhlF, RBS+PhlF + T, pSrpR, RBS + SrpR + T).
+
<h2 id="pfont1">The system could be used as the bacterial analogue of memory storage. The base of the oscillations could be called the 0 bit, and the high point could be called the 1 bit, and these combinations of 0 and 1 bits could be used to store short term memory in biological cultures, performing the functions that the RAM (random access memory) does in computers.
 
</h2>
 
</h2>
 
 
Line 1,827: Line 1,824:
  
 
<br>
 
<br>
<div align="left" style="font-size: 84%;">
 
 
</div>
 
 
            </p>
 
 
           </div>
 
           </div>
  
<button class="accordion back3" style="font-weight: bold;">Human Practices:</button>
 
          <div class="panel">
 
  
<!--<u><b><h4 id="pfont" style="font-size: 90%;"></h4></b></u>-->
+
      <header class="major">
 +
       
 +
       
 +
            <h2 class="h2font">From Sinusoids to Square Waves</h2>
  
<div align="left" style="font-size: 84%;" class="padding1">
+
            <p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<left>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
</p>
 +
<h2 id="pfont">Sinusoidal waves have been generated and characterized in several circuits employing various topologies so far, including single cell oscillators, small colony synchronized quorum sensing based oscillators, wide range synchronized oscillators (that synchronize over different channels inside a microfluidic chamber), and even mammalian oscillators. Thus, we used these as a starting point in our project, and thought of ways to transform this sinusoid, so as to generate a square wave. <br><br>
 +
After brainstorming, basic modeling and simulations, and discussing several possible topologies (which have been linked below), we finally found the 5 node ring topology with our design modifications to be the best solution to the problem.
 +
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/2/2f/T--IIT_Delhi--Lavlesh_Bhanot.jpg" alt="" /></span><b id="pfont2">Mr. Lavlesh Bhanot</b><br> Mr. Lavlesh Bhanot is the Course Manager of Professional Ethics and Social Responsibility (PESR) committee IIT Delhi. He helped us in conducting the workshop under the course of Ethics and Social Responsibility. We thank him for his interest and assistance.
+
<br><br>
</h2>
+
<img src = "https://static.igem.org/mediawiki/2017/b/b3/T--IIT_Delhi--Project_Square_Wave_Generator-picture_2.png" style='border:3px solid #000000' width = 80%><br><br>
<h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/b/b4/T--IIT_Delhi--Mrs._Charu_Maini.jpg" alt="" /></span><b id="pfont2">Mrs. Charu Maini</b><br> Mrs. Charu Maini is the Principal of DAV Public School, Sector 48,49, she played a significant role in spreading our message to other schools in Delhi. We thank her for the assistance.  
+
The basic topology for the system was inspired by the 3 node repressilator, which basically had repressors arranged in a cyclic fashion, where one represses the second, the second represses the third, and the third represses the first. The same schematic, with an even number addition to the number of nodes can generate oscillations, as has been shown by several groups in the literature. Thus, we employed a novel 5 node system in the same fashion, with our design modifications, in order to get the square waves to work.<br> <br>
</h2>
+
  
                                                        <h2 id="pfont1"><b id="pfont2">Mr. Tarun Gulyami</b><br> Mr. Tarun Gulyami is the Head of Biology Department, DAV Public School, Sector 14, he showed his keen interest towards the workshop conducted and was interested to send India’s first High School team at iGEM. We appreciate his support and enthusiasm.
+
<img src = "https://static.igem.org/mediawiki/2017/1/1e/T--IIT_Delhi--Project_Square_Wave_Generator-picture_3.png" width = 80%><br><br>
</h2>
+
For this transformation from “y = sin (t)” to “y = square(t)” (as MATLAB calls it), the major strategies for conversion, and how our 5 node oscillator employs these to generate square waves have been outlined below.
 +
<br>
  
                                                        <h2 id="pfont1"><b id="pfont2">Profs. at IIT Delhi</b><br> We would also like to thank Prof. Sangeeta Kohli (Department of Mechanical Engineering)
+
</h2></header>
And Prof. P. V. Madhusudhan Rao (Mechanical Engineering Department) for their support to conduct human practices at Institute level.
+
</h2>
+
  
</left>
+
          <header class="major">
</div>
+
       
 +
       
 +
            <h2 class="h2font">Graded to Digital Response – High Cooperativity</h2>
  
<br>
+
            <p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<div align="left" style="font-size: 84%;">
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
</p>
 +
<h2 id="pfont"> The first issue that we identified was that sine waves go up and come down in a slow fashion; slower than what we would want in our square waves. Thus, the first thing to do was to increase the rate of the response, by employing a mechanism wherein the repressors act quickly, and only after a certain point. This would make rise and fall times faster.<br><br>
 +
As mentioned in the earlier section as well, cooperativity is the property of a repressor that represents the number of molecules of the repressor that need to combine and polymerize before they can repress the promoter of their corresponding gene. Repressor cooperativities bring down the rate of production of the protein in a multiplicative fashion via the hill function, which can be represented as (P represents protein concentration, n represents cooperativity) –
 +
<br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/b/bb/T--IIT_Delhi--Project_Square_Wave_Generator-picture_5.png" ><br><br>
  
</div>
+
And again, as the cooperativity of the repressor changes, the level of the protein changes as follows – <br> <br>
  
            </p>
+
<img src = "https://static.igem.org/mediawiki/2017/0/03/T--IIT_Delhi--Project_Square_Wave_Generator-picture_4.png" style='border:3px solid #000000' width = 80%><br><br>
          </div>
+
Therefore, the high cooperativity promotes faster degradation. This fact was exploited by us for this purpose, employing repressors with the highest cooperativity from the 73 TetR homologs that were reported in Voigt’s paper (see references below). Thus, we were able to take care of the rise and fall times using these high cooperativity TetR homologs. The cooperativities and names of the repressors used in our system are as follows –
 +
<br><br>
 +
<center>
 +
<table style="width:50%" class="table1">
 +
  <tr>
 +
    <th>Node</th>
 +
    <th>Repressor Used</th>
 +
    <th>Cooperativity Reported</th>
 +
  </tr>
 +
  <tr>
 +
    <td>A</td>
 +
    <td>Orf2</td>
 +
    <td>6.3</td>
 +
  </tr>
 +
  <tr>
 +
    <td>B</td>
 +
    <td>TetR</td>
 +
    <td>3</td>
 +
  </tr>
 +
  <tr>
 +
<td>C</td>
 +
    <td>SrpR</td>
 +
    <td>3.2</td>
 +
  </tr>
 +
<tr>
 +
<td>D</td>
 +
    <td>PhlF</td>
 +
    <td>4.5</td>
 +
  </tr>
 +
<tr>
 +
<td>E</td>
 +
    <td>Bm3RI</td>
 +
    <td>4.5</td>
 +
  </tr>
  
<button class="accordion back4" style="font-weight: bold;">Finance:</button>
+
</table>
          <div class="panel">
+
</center>
  
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
</h2></header>
  
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
  
<h2 id="pfont1"><b id="pfont2">Mr. Sunil</b><br> Mr. Sunil is the General Accountant of Prompt Enterprises, he has given tremendous amount of his time towards the formalities and documentation of the funding from Prompt Enterprises.
+
<header class="major">
</h2>
+
       
+
       
</left>
+
            <h2 class="h2font">Holding the Constant ON State – Time Delay</h2>
</div>
+
  
<br>
+
            <p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<div align="left" style="font-size: 84%;">
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
</p>
 +
<h2 id="pfont"> Once we were ensured that the rates would be faster, we next turned to holding the constant ON and OFF states, a property that square wave oscillators exhibit, and sinusoidal ones don’t. <br>
 +
In order to maintain its state once it is high, we required a time delay between when the level of a node rises and when it falls. This is taken care of by our square wave oscillator by having the two extra repressor nodes. Basically, the two nodes do not qualitatively change the state of the oscillations, since if A has to repress D, then now in our circuit, A represses B, which in turn now cannot repress C, and therefore C is produced, which represses D. Therefore, the effect remains the same, but there is a delay introduced. This is shown diagrammatically below –
 +
<br><br>
  
</div>
+
<img src = "https://static.igem.org/mediawiki/2017/5/58/T--IIT_Delhi--Project_Square_Wave_generator9.jpg" style='border:3px solid #000000' width = 90%><br><br>
  
            </p>
 
          </div>
 
  
<button class="accordion back1" style="font-weight: bold;">Sponsors:</button>
+
</h2></header>
          <div class="panel">
+
            <!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
  
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
  
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/5/5c/T--IIT_Delhi--Prompt_enterprises.jpg" alt="" /></span><b id="pfont2">Prompt enterprises Pvt Ltd.</b><br> Without the support of our title sponsor ‘Prompt enterprises pvt ltd’ it wouldn’t have been possible to carry out our financial requirement whether it is for the lab resources or fees or travelling expenses.
+
<header class="major">
</h2>
+
       
<h2 id="pfont1"><span class="image right"><img src="https://static.igem.org/mediawiki/2017/5/58/T--IIT_Delhi--Snapgene.jpg" alt="" /></span><b id="pfont2">Snapgene</b><br> We would also like to express our gratitude towards Snapgene for providing us access to the software. It turned out to be of immense use for designing the biological parts.
+
       
</h2>
+
            <h2 class="h2font">Noise Reduction – Low Copy Reporter and Removal of Degradation Tags</h2>
                                                        <h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/9/99/T--IIT_Delhi--Previous_sponsors.jpg" alt="" /></span><b id="pfont2">Previous Sponsors</b><br> We thank our previous sponsors for their valuable support:
+
Mahindra, Coding Blocks, DHL, Medanta, Woodland, Department of Biotechnology (DBT), Govt. of India.
+
</h2>
+
  
</left>
+
            <p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</div>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
</p>
 +
<h2 id="pfont"> Having catered to the issues of rise time and fall time, as well as holding the ON and OFF states for a long time similar to how square waves behave, we then also wanted to have the oscillator be noise free. Noise in biological systems can hamper the oscillations by driving the cells out of phase due to copy number variations of the plasmid, leaky expression, and other factors. <br>
 +
How our square wave oscillator caters to the noise is as follows –
  
<br>
+
<br><br>
<div align="left" style="font-size: 84%;">
+
<ol>
 +
<li>High cooperativity repressors – High cooperativity ensures a near digital response, and therefore lower concentrations of the repressor would not be able to repress their corresponding node well enough, due to their requirement to dimerize in high numbers.
  
</div>
+
<li>Low copy reporter – Demonstrated by Paulsson et al, one of the main sources of noise in the repressilator was that the reporter was placed in a high copy number plasmid. Such high copy numbers (containing pUC19 or pMB1 origins of replication) can have large cell to cell variations in copy number, thereby reporting in a faulty, noisy manner. Therefore, as was done by their group, our square wave oscillator contains the reporter on a low copy backbone (p15A ori).
  
            </p>
+
<li>Removing degradation Tags – Paulsson et al, in the same paper, reported that the ssrA degradation tags that were used at the end of the repressor genes in the repressilator also employed machinery that was noisy. Removing these tags from his system brought down the variance significantly. Our square wave oscillator employs the same strategy for noise reduction.
          </div>
+
</ol>
 +
<br><br>
  
<button class="accordion back2" style="font-weight: bold;">Work done by Team Members:</button>
 
          <div class="panel">
 
  
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
</h2></header>
  
<div align="left" style="font-size: 84%;" class="padding1">
 
<left>
 
  
<h2 id="pfont1"><b id="pfont2">Wetlab</b><br> Kshitij Rai, Saksham Sharma, Abhilash Patel, Pulkit Srivastava, Sashi Kalan, Pratyush Maini, Divya Choudhary, Siddhesh Gandhi.
+
<header class="major">
</h2>
+
       
<h2 id="pfont1"><b id="pfont2">Computational Modelling</b><br> Abhilash Patel, Tarun Mahajan, Kshitij Rai, Pulkit Srivastava, Shreya Johri.
+
       
</h2>
+
            <h2 class="h2font">References</h2>
  
                                                        <h2 id="pfont1"><b id="pfont2">Human Practices</b><br> Milind Zode, Tanuj Garg, Kshitij Rai, Pulkit Srivastava, Ishank Pahwa, Nipun Gupta.
+
            <p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</h2>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
</p>
 +
<h2 id="pfont"> <ol>
 +
<li>Gardner, Timothy S., Charles R. Cantor, and James J. Collins. "Construction of a genetic toggle switch in Escherichia coli." Nature 403.6767 (2000): 339-342.
 +
<li> Elowitz, Michael B., and Stanislas Leibler. "A synthetic oscillatory network of transcriptional regulators." Nature 403.6767 (2000): 335-338.
 +
<li>Niederholtmeyer, Henrike, et al. "Rapid cell-free forward engineering of novel genetic ring oscillators." Elife 4 (2015): e09771.
 +
<li>Stanton, Brynne C., et al. "Genomic mining of prokaryotic repressors for orthogonal logic gates." Nature chemical biology 10.2 (2014): 99-105.
 +
<li>Potvin-Trottier, Laurent, et al. "Synchronous long-term oscillations in a synthetic gene circuit." Nature538.7626 (2016): 514-517.
 +
<li>Danino, Tal, et al. "A synchronized quorum of genetic clocks." Nature463.7279 (2010): 326.
 +
<li>Slomovic, Shimyn, Keith Pardee, and James J. Collins. "Synthetic biology devices for in vitro and in vivo diagnostics." Proceedings of the National Academy of Sciences 112.47 (2015): 14429-14435.
 +
<li>Callura, Jarred M., Charles R. Cantor, and James J. Collins. "Genetic switchboard for synthetic biology applications." Proceedings of the National Academy of Sciences 109.15 (2012): 5850-5855.
 +
<li>Weber, Wilfried, and Martin Fussenegger. "Emerging biomedical applications of synthetic biology." Nature reviews. Genetics 13.1 (2012): 21.
 +
<li>Xie, Zhen, et al. "Multi-input RNAi-based logic circuit for identification of specific cancer cells." Science 333.6047 (2011): 1307-1311.
 +
</ol>
 +
<br><br>
  
                                                        <h2 id="pfont1"><b id="pfont2">Wiki Development</b><br> Pratyush Maini, Divya Choudhary.
 
</h2>
 
  
                                                        <h2 id="pfont1"><b id="pfont2">Creative, Design and Content Development</b><br> Divya Choudhary, Pratyush Maini, Kshitij Rai, Varuni Sarwal, Preeti Raj, Abhishek Kumar, Shreya Johri, Tanuj Garg, Milind Zode.
+
</h2></header>
</h2>
+
 
+
                                                        <h2 id="pfont1"><b id="pfont2">Marketing</b><br> Tanuj Garg, Nipun Gupta, Ishank Pahwa, Pratyush Maini, Divya Choudhary, Pulkit Srivastava, Sashi Kalan, Milind Zode.
+
</h2>
+
                                                       
+
</left>
+
</div>
+
 
+
<br>
+
<div align="left" style="font-size: 84%;">
+
 
+
</div>
+
 
+
            </p>
+
          </div>
+
 
+
<button class="accordion back3" style="font-weight: bold;">Research Institute:</button>
+
          <div class="panel">
+
<!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
 
+
<div align="left" style="font-size: 84%;" class="padding1">
+
<left>
+
 
+
<h2 id="pfont1" style="text-align:center">  We thank our Institute wholeheartedly. <br> <span class="image"><img src="https://static.igem.org/mediawiki/2017/2/25/T--IIT_Delhi--The_Institute.jpg" alt="" style="display: block; margin: auto; width:80%; height:80%"/></span> <br>
+
</h2>
+
+
</left>
+
</div>
+
 
+
<br>
+
<div align="left" style="font-size: 84%;">
+
 
+
</div>
+
 
+
            </p>
+
          </div>
+
 
+
<button class="accordion back4" style="font-weight: bold;">iGEM Foundation</button>
+
          <div class="panel">
+
          <!--<u><b><h4 id="pfont"  style="font-size: 90%;"></h4></b></u>-->
+
 
+
<div align="left" style="font-size: 84%;" class="padding1">
+
<left>
+
 
+
<h2 id="pfont1"><span class="image left"><img src="https://static.igem.org/mediawiki/2017/1/1f/T--IIT_Delhi--iGEM.jpg" alt="" /></span> <br> Last but not the least, we are extremely grateful to International Genetic Engineering Machine Foundation for creating such an incredible platform 'iGEM Competition' where multidisciplinary students get the opportunity to work and build genetically engineered systems using standard biological parts(BioBricks) to solve real-world challenges. Moreover, it brings all such students and their projects together annually which essentially is paramount in many aspects like the development of research and interest among students in the field of synthetic biology, ultimately, creating a positive contribution to the world.
+
</h2>
+
+
</left>
+
</div>
+
 
+
<br>
+
<div align="left" style="font-size: 84%;">
+
 
+
</div>
+
  
            </p>
+
    <br>
          </div><br>
+
 
     <br>
 
     <br>
 
     <br>
 
     <br>

Latest revision as of 23:34, 1 November 2017

iGEM IIT Delhi


Introduction

                                                                                                                                                                                                                 

Several circuits have been proposed, constructed, and implemented, leading to landmark discoveries in synthetic biology. These include systems such as the bi-stable toggle switch, and the repressilator, which brought about a paradigm shift in the field. Since then, several systems have been constructed to employ memory modules, create counters, adders, digital biosensors, and a whole wide range of other products.


Figure – A brief timeline of major notable events in the creation and development of synthetic biology (Source: Del Vecchio, Domitilla et al, Journal of The Royal Society Interface 13.120 (2016): 20160380.)

However, there are several limitations that still need to be overcome, as the field continues to make strides in every area. These involve the fact that biological systems have a lot of noises that cannot be modeled accurately to date, and the fact that metabolic burden is a major issue. Along these lines, one of the central issues is the distinct lack of digital responses in synthetic biology.
Thus, as described in the project overview, we wished to use the high cooperativity TetR homologs in such a manner so as to generate a square wave oscillator circuit. Such a system could have a whole multitude of applications; some of which were mentioned briefly in the overview, and the same are also discussed below,

Applications

                                                                                                                                           

The potential of genetic clock lies in its role to triggering logic reaction for sequential biological circuits. A square wave generator could be used as a genetic clock, since square waves lie at the heart of clocks. Further, these clocks could be used in any cellular system to time particular events.


This could be used to study correlation between two genes, by coupling one of the genes to the oscillator, then observe the dynamics of the second gene. In this manner, the effect of one gene on the others could be studied.


Like diabetic patients, insulin needs to be provided externally through injections or other means. Our oscillator system could be used as a patch containing bacteria that are oscillating to produce square levels of insulin to the patient once. This then would deliver insulin automatically at intervals, guided by our system .Further when the requirement for insulin would be high, the amount of insulin being delivered to them could be changed through some source which could dive a change in frequency of the oscillations (future applications could be focused on engineering frequency modulation).


A bacterial species could be engineered to produce levels of the permease for a particular sugar in the form of a square wave. Thus, at varying intervals of time, the permease (say lac permease) would be expressed, which would cause the bacteria to start metabolizing lactose. When it goes off, the bacteria would not express the lac permease and consume glucose. In this manner, we could tune the frequency of the oscillations to ensure metabolic switching and activation of pathway shunts in the manner that we want.


If we can control the frequency of the oscillations and modulate the time spent by the wave in the ON and OFF state (which is basically a function of the frequency itself), we could generate a combination of 0’s and 1’s, in order to generate a bar code. This bar code would be read in time, and therefore would be a temporal bar code. A typical example of this would be to encode the word “iGEM” by 11001001, where 1 represents an ON state for say, 20 minutes. Thus, an 11 response, which represents the letter i, would then be read if the fluorescence stays on for 40 minutes. In this fashion, our device could be used for encryption of data.


The system could be used as the bacterial analogue of memory storage. The base of the oscillations could be called the 0 bit, and the high point could be called the 1 bit, and these combinations of 0 and 1 bits could be used to store short term memory in biological cultures, performing the functions that the RAM (random access memory) does in computers.


From Sinusoids to Square Waves

                                                                                                                                                                                                                 

Sinusoidal waves have been generated and characterized in several circuits employing various topologies so far, including single cell oscillators, small colony synchronized quorum sensing based oscillators, wide range synchronized oscillators (that synchronize over different channels inside a microfluidic chamber), and even mammalian oscillators. Thus, we used these as a starting point in our project, and thought of ways to transform this sinusoid, so as to generate a square wave.

After brainstorming, basic modeling and simulations, and discussing several possible topologies (which have been linked below), we finally found the 5 node ring topology with our design modifications to be the best solution to the problem.



The basic topology for the system was inspired by the 3 node repressilator, which basically had repressors arranged in a cyclic fashion, where one represses the second, the second represses the third, and the third represses the first. The same schematic, with an even number addition to the number of nodes can generate oscillations, as has been shown by several groups in the literature. Thus, we employed a novel 5 node system in the same fashion, with our design modifications, in order to get the square waves to work.



For this transformation from “y = sin (t)” to “y = square(t)” (as MATLAB calls it), the major strategies for conversion, and how our 5 node oscillator employs these to generate square waves have been outlined below.

Graded to Digital Response – High Cooperativity

                                                                                                                                                                                                                 

The first issue that we identified was that sine waves go up and come down in a slow fashion; slower than what we would want in our square waves. Thus, the first thing to do was to increase the rate of the response, by employing a mechanism wherein the repressors act quickly, and only after a certain point. This would make rise and fall times faster.

As mentioned in the earlier section as well, cooperativity is the property of a repressor that represents the number of molecules of the repressor that need to combine and polymerize before they can repress the promoter of their corresponding gene. Repressor cooperativities bring down the rate of production of the protein in a multiplicative fashion via the hill function, which can be represented as (P represents protein concentration, n represents cooperativity) –



And again, as the cooperativity of the repressor changes, the level of the protein changes as follows –



Therefore, the high cooperativity promotes faster degradation. This fact was exploited by us for this purpose, employing repressors with the highest cooperativity from the 73 TetR homologs that were reported in Voigt’s paper (see references below). Thus, we were able to take care of the rise and fall times using these high cooperativity TetR homologs. The cooperativities and names of the repressors used in our system are as follows –

Node Repressor Used Cooperativity Reported
A Orf2 6.3
B TetR 3
C SrpR 3.2
D PhlF 4.5
E Bm3RI 4.5

Holding the Constant ON State – Time Delay

                                                                                                                                                                                                                 

Once we were ensured that the rates would be faster, we next turned to holding the constant ON and OFF states, a property that square wave oscillators exhibit, and sinusoidal ones don’t.
In order to maintain its state once it is high, we required a time delay between when the level of a node rises and when it falls. This is taken care of by our square wave oscillator by having the two extra repressor nodes. Basically, the two nodes do not qualitatively change the state of the oscillations, since if A has to repress D, then now in our circuit, A represses B, which in turn now cannot repress C, and therefore C is produced, which represses D. Therefore, the effect remains the same, but there is a delay introduced. This is shown diagrammatically below –



Noise Reduction – Low Copy Reporter and Removal of Degradation Tags

                                                                                                                                                                                                                 

Having catered to the issues of rise time and fall time, as well as holding the ON and OFF states for a long time similar to how square waves behave, we then also wanted to have the oscillator be noise free. Noise in biological systems can hamper the oscillations by driving the cells out of phase due to copy number variations of the plasmid, leaky expression, and other factors.
How our square wave oscillator caters to the noise is as follows –

  1. High cooperativity repressors – High cooperativity ensures a near digital response, and therefore lower concentrations of the repressor would not be able to repress their corresponding node well enough, due to their requirement to dimerize in high numbers.
  2. Low copy reporter – Demonstrated by Paulsson et al, one of the main sources of noise in the repressilator was that the reporter was placed in a high copy number plasmid. Such high copy numbers (containing pUC19 or pMB1 origins of replication) can have large cell to cell variations in copy number, thereby reporting in a faulty, noisy manner. Therefore, as was done by their group, our square wave oscillator contains the reporter on a low copy backbone (p15A ori).
  3. Removing degradation Tags – Paulsson et al, in the same paper, reported that the ssrA degradation tags that were used at the end of the repressor genes in the repressilator also employed machinery that was noisy. Removing these tags from his system brought down the variance significantly. Our square wave oscillator employs the same strategy for noise reduction.


References

                                                                                                                                                                                                                 

  1. Gardner, Timothy S., Charles R. Cantor, and James J. Collins. "Construction of a genetic toggle switch in Escherichia coli." Nature 403.6767 (2000): 339-342.
  2. Elowitz, Michael B., and Stanislas Leibler. "A synthetic oscillatory network of transcriptional regulators." Nature 403.6767 (2000): 335-338.
  3. Niederholtmeyer, Henrike, et al. "Rapid cell-free forward engineering of novel genetic ring oscillators." Elife 4 (2015): e09771.
  4. Stanton, Brynne C., et al. "Genomic mining of prokaryotic repressors for orthogonal logic gates." Nature chemical biology 10.2 (2014): 99-105.
  5. Potvin-Trottier, Laurent, et al. "Synchronous long-term oscillations in a synthetic gene circuit." Nature538.7626 (2016): 514-517.
  6. Danino, Tal, et al. "A synchronized quorum of genetic clocks." Nature463.7279 (2010): 326.
  7. Slomovic, Shimyn, Keith Pardee, and James J. Collins. "Synthetic biology devices for in vitro and in vivo diagnostics." Proceedings of the National Academy of Sciences 112.47 (2015): 14429-14435.
  8. Callura, Jarred M., Charles R. Cantor, and James J. Collins. "Genetic switchboard for synthetic biology applications." Proceedings of the National Academy of Sciences 109.15 (2012): 5850-5855.
  9. Weber, Wilfried, and Martin Fussenegger. "Emerging biomedical applications of synthetic biology." Nature reviews. Genetics 13.1 (2012): 21.
  10. Xie, Zhen, et al. "Multi-input RNAi-based logic circuit for identification of specific cancer cells." Science 333.6047 (2011): 1307-1311.





Sponsored By
Contact Us Address

E-mail: iitd.igem@gmail.com
Undergraduate Laboratory
Department of Biotechnology and Biochemical Engineering, IIT Delhi