Difference between revisions of "Team:TUDelft/Home"

Line 1: Line 1:
 
<html>
 
<html>
<main class="row">
+
    <main class="row">
 
         <div class="col m1"></div>
 
         <div class="col m1"></div>
 
         <div class="col s12 m10">
 
         <div class="col s12 m10">
Line 23: Line 23:
 
                 </ul>
 
                 </ul>
 
             </div>
 
             </div>
            <div class="col m1"></div>
 
            <div class="col s12 m10">
 
  
                <!-- HERE YOU CAN TYPE YOUR STUFF -->
+
            <!-- HERE YOU CAN TYPE YOUR STUFF -->
                <h1>Case13a: antibiotic resistance revealed</h1>
+
            <h1>Case13a: antibiotic resistance revealed</h1>
                <div class="row">
+
            <div class="row">
  
                    <div class="col m2 s12">
+
                <div class="col m2 s12">
                        <a href="https://2017.igem.org/Team:TUDelft/Description"><img src="https://static.igem.org/mediawiki/2017/7/7c/T--TUDelft--2017_Project.png" alt="Project" class="responsive-img"></a>
+
                    <a href="https://2017.igem.org/Team:TUDelft/Description"><img src="https://static.igem.org/mediawiki/2017/7/7c/T--TUDelft--2017_Project.png" alt="Project" class="responsive-img"></a>
                    </div>
+
                </div>
  
                    <div class="col m2 s12">
+
                <div class="col m2 s12">
                        <a href="https://2017.igem.org/Team:TUDelft/Sponsors"><img src=https://static.igem.org/mediawiki/2017/c/c8/T--TUDelft--2017_Sponsors.png alt='Sponsor' class="responsive-img"></a>
+
                    <a href="https://2017.igem.org/Team:TUDelft/Sponsors"><img src=https://static.igem.org/mediawiki/2017/c/c8/T--TUDelft--2017_Sponsors.png alt='Sponsor' class="responsive-img"></a>
                    </div>
+
                </div>
  
                    <div class="col m2 s12">
+
                <div class="col m2 s12">
                        <a href="https://2017.igem.org/Team:TUDelft/Modeling"><img src=https://static.igem.org/mediawiki/2017/a/a7/T--TUDelft--2017_Modeling.png alt='Modeling' class="responsive-img"></a>
+
                    <a href="https://2017.igem.org/Team:TUDelft/Modeling"><img src=https://static.igem.org/mediawiki/2017/a/a7/T--TUDelft--2017_Modeling.png alt='Modeling' class="responsive-img"></a>
                    </div>
+
                    <div class="col m2 s12">
+
                        <a href="https://2017.igem.org/Team:TUDelft/Software"><img src=https://static.igem.org/mediawiki/2017/7/75/T--TUDelft--2017_Software.png alt='Software' class="responsive-img"></a>
+
                    </div>
+
                    <div class="col m2 s12">
+
                        <a href="https://2017.igem.org/Team:TUDelft/Parts"><img src=https://static.igem.org/mediawiki/2017/f/f4/T--TUDelft--2017_Parts.png alt='Parts' class="responsive-img"></a>
+
                    </div>
+
                    <div class="col m2 s12">
+
                        <a href="https://2017.igem.org/Team:TUDelft/HP/Gold_Integrated"><img src=https://static.igem.org/mediawiki/2017/0/0a/T--TUDelft--2017_Int_hum_prac.png alt='IHP' class="responsive-img"></a>
+
                    </div>
+
 
                 </div>
 
                 </div>
                 <p>Indiscriminate usage of antibiotics allows pathogenic bacteria to develop mechanisms that render these antibiotics ineffective.</p>
+
                 <div class="col m2 s12">
                <!-- Image antibiotic resistance development-->
+
                    <a href="https://2017.igem.org/Team:TUDelft/Software"><img src=https://static.igem.org/mediawiki/2017/7/75/T--TUDelft--2017_Software.png alt='Software' class="responsive-img"></a>
                <p>Especially in the animal sector, antibiotics are still overused. Bacteria that develop antibiotic resistance there, can spread via food or direct contact, posing a threat to human health. It is estimated that by 2050, 10 million people will die annually due to antibiotic resistant bacteria (<a href='#References'>O’Neill, 2014).</a></p>
+
                </div>
 +
                <div class="col m2 s12">
 +
                    <a href="https://2017.igem.org/Team:TUDelft/Parts"><img src=https://static.igem.org/mediawiki/2017/f/f4/T--TUDelft--2017_Parts.png alt='Parts' class="responsive-img"></a>
 +
                </div>
 +
                <div class="col m2 s12">
 +
                    <a href="https://2017.igem.org/Team:TUDelft/HP/Gold_Integrated"><img src=https://static.igem.org/mediawiki/2017/0/0a/T--TUDelft--2017_Int_hum_prac.png alt='IHP' class="responsive-img"></a>
 +
                </div>
 +
            </div>
 +
            <p>Indiscriminate usage of antibiotics allows pathogenic bacteria to develop mechanisms that render these antibiotics ineffective.</p>
 +
            <!-- Image antibiotic resistance development-->
 +
            <p>Especially in the animal sector, antibiotics are still overused. Bacteria that develop antibiotic resistance there, can spread via food or direct contact, posing a threat to human health. It is estimated that by 2050, 10 million people will die annually due to antibiotic resistant bacteria (<a href='#References'>O’Neill, 2014).</a></p>
  
                <!-- Picture spread of antibiotic resistance from animals to farmers-->
+
            <!-- Picture spread of antibiotic resistance from animals to farmers-->
                <p>The goal of our project is to develop a tool that will enable farmers to test on-site if a cow suffering from a bacterial infection is infected with antibiotic resistant bacteria. Based on the output, they can adapt their antibiotics usage, resulting in a more targeted treatment.</p>
+
            <p>The goal of our project is to develop a tool that will enable farmers to test on-site if a cow suffering from a bacterial infection is infected with antibiotic resistant bacteria. Based on the output, they can adapt their antibiotics usage, resulting in a more targeted treatment.</p>
  
                <!-- Schematic of test with visible output-->
+
            <!-- Schematic of test with visible output-->
                <!-- Schematic of the device and the different modules; arrows to scenario's to indicate flexibility-->
+
            <!-- Schematic of the device and the different modules; arrows to scenario's to indicate flexibility-->
                <p>Our project consists of three parts: a recently characterized variant of the CRISPR/Cas system (Cas13a) for fast and accurate detection; tardigrade proteins that increase the shelf-life of our device; and the coacervation method for visible read-out. Moreover, we aim to use cells as mini-factories through the use of vesicles, truly transforming bacteria in genetically engineered machines.</p>
+
            <p>Our project consists of three parts: a recently characterized variant of the CRISPR/Cas system (Cas13a) for fast and accurate detection; tardigrade proteins that increase the shelf-life of our device; and the coacervation method for visible read-out. Moreover, we aim to use cells as mini-factories through the use of vesicles, truly transforming bacteria in genetically engineered machines.</p>
                <p><b>Our project tackles one of the biggest challenges our society faces in the coming years - we offer a durable device that contributes to the reduction of antibiotic resistance. Furthermore, our device is easily adaptable to detect any kind of DNA/RNA sequence, opening doors for the rapid diagnosis of many diseases.</b></p>
+
            <p><b>Our project tackles one of the biggest challenges our society faces in the coming years - we offer a durable device that contributes to the reduction of antibiotic resistance. Furthermore, our device is easily adaptable to detect any kind of DNA/RNA sequence, opening doors for the rapid diagnosis of many diseases.</b></p>
  
                <div id="references" class="section card">
+
            <div id="references" class="section card">
                    <div class='card-content'>
+
                <div class='card-content'>
                        <span class='card-title'>References:</span>
+
                    <span class='card-title'>References:</span>
                        <ol>
+
                    <ol>
                            <li><a href="https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf">O'Neill J. Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance. 2014. </a></li>
+
                        <li><a href="https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf">O'Neill J. Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance. 2014. </a></li>
                        </ol>
+
                    </ol>
                    </div>
+
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
            <div class="col m1"></div>
 
            <!-- RIGHT BETWEEN THOSE TWO COMMENTS -->
 
 
         </div>
 
         </div>
 +
        <div class="col m1"></div>
 +
        <!-- RIGHT BETWEEN THOSE TWO COMMENTS -->
 
         <div class="col m1"></div>
 
         <div class="col m1"></div>
 
     </main>
 
     </main>
 
</html>
 
</html>

Revision as of 01:03, 2 November 2017

Case13a: antibiotic resistance revealed

Project
Sponsor
Modeling
Software
Parts
IHP

Indiscriminate usage of antibiotics allows pathogenic bacteria to develop mechanisms that render these antibiotics ineffective.

Especially in the animal sector, antibiotics are still overused. Bacteria that develop antibiotic resistance there, can spread via food or direct contact, posing a threat to human health. It is estimated that by 2050, 10 million people will die annually due to antibiotic resistant bacteria (O’Neill, 2014).

The goal of our project is to develop a tool that will enable farmers to test on-site if a cow suffering from a bacterial infection is infected with antibiotic resistant bacteria. Based on the output, they can adapt their antibiotics usage, resulting in a more targeted treatment.

Our project consists of three parts: a recently characterized variant of the CRISPR/Cas system (Cas13a) for fast and accurate detection; tardigrade proteins that increase the shelf-life of our device; and the coacervation method for visible read-out. Moreover, we aim to use cells as mini-factories through the use of vesicles, truly transforming bacteria in genetically engineered machines.

Our project tackles one of the biggest challenges our society faces in the coming years - we offer a durable device that contributes to the reduction of antibiotic resistance. Furthermore, our device is easily adaptable to detect any kind of DNA/RNA sequence, opening doors for the rapid diagnosis of many diseases.