Difference between revisions of "Team:Erlangen Nuremberg"

 
(40 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{Erlangen_Nuremberg}}
 
<html>
 
<html>
 +
<style>
 +
.navbar-default, .navbar-brand {
 +
transition: all 0.5s;
 +
}
  
<head>
+
nav.navbar.navbar-default.navbar-fixed-top.transparent {
    <meta charset="utf-8">
+
background-color: rgba(0, 0, 0, 0);
    <title>iGEM Erlangen Würzburg</title>
+
}
  
 +
.transparent .navbar-brand {
 +
background-image: url('/wiki/images/1/19/T--Erlangen_Nuremberg--Logo_inverted.png')
 +
}
  
        <!--CSS-->
+
@media (max-width: 1024px) {
        <link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:Erlangen_Nuremberg/CSS">
+
div#navbar {
 +
background-color: rgba(255, 255, 255, 0.95);
 +
}
 +
}
  
        <!-- Latest compiled and minified CSS -->
+
.parallax {
        <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
+
height: 90vh;
 +
/*background: url("images/T--Erlangen_Nuremberg--DNA_String.png.jpeg") no-repeat fixed center;*/
 +
background-color: #000;
 +
background-size: cover;
 +
position: relative;
 +
margin-top: -100px;
 +
}
  
        <!-- Optional theme -->
+
.parallax-heading {
        <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css" integrity="sha384-rHyoN1iRsVXV4nD0JutlnGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwl/Sp" crossorigin="anonymous">
+
top: 40%;
 +
position: absolute;
 +
}
  
 +
.parallax h1 {
 +
margin: 0 8.5%;
 +
color: white;
 +
font-weight: 100 !important;
 +
font-size: 2.5em;
 +
background: none;
 +
padding: 10px;
  
        <!-- Latest compiled and minified JavaScript -->
+
}
        <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
+
  
        <!-- scrolling animation -->
+
p:first-child {
        <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
+
margin: 0;
        <script>
+
}
  
        $(document).ready(function(){
+
/* Turn off parallax scrolling for tablets and phones. Increase/decrease the pixels if needed */
          // Add smooth scrolling to all links
+
@media (max-width: 768px) {
          $("a").on('click', function(event) {
+
.parallax {
 +
background-attachment: scroll;
 +
}
  
            // Make sure this.hash has a value before overriding default behavior
+
.parallax h1 {
            if (this.hash !== "") {
+
font-size: 180%;
 +
font-weight: 100;
 +
}
 +
}
  
              // Store hash
+
    .light{
              var hash = this.hash;
+
        text-align: center;
 +
    }
  
              // Using jQuery's animate() method to add smooth page scroll
+
.light p {
              // The optional number (800) specifies the number of milliseconds it takes to scroll to the specified area
+
margin-left: 20%;
              $('html, body').animate({
+
margin-right: 20%;
                scrollTop: $(hash).offset().top
+
color: #333230;
              }, 800, function(){
+
letter-spacing: 0.5px;
 +
}
  
                // Add hash (#) to URL when done scrolling (default click behavior)
+
.light h2 {
                window.location.hash = hash;
+
font-weight: 100;
              });
+
         letter-spacing: 2px;
            } // End if
+
          });
+
         });
+
        </script>
+
  
</head>
+
}
    <body>
+
        <nav class="navbar navbar navbar-fixed-top">
+
  
            <div class="container-fluid">
+
</style>
                <div class="navbar-header">
+
                    <a class="navbar-brand pull-left" href="/html/home.html">
+
                        <div class="logo">
+
                            <img src="/igemwebsite/images/logo.png" alt="iGEM Logo"/>
+
                        </div>
+
                    </a>
+
                </div>
+
  
                <ul class="nav navbar-nav navbar-right collapse navbar-collapse" data-hover="dropdown" data-animations="zoomIn">
 
                    <li class="home active"><a href=""S>Home</a></li>
 
                    <li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" data-hover="dropdown" href="notebook.html">Notebook</a>
 
                        <ul class="dropdown-menu">
 
                            <li><a href="/igemwebsite/html/notebook/timeline_erlangen.html">Erlangen</a></li>
 
                            <li><a href="/igemwebsite/html/notebook/timeline_wuerzburg.html">Würzburg</a></li>
 
                        </ul>
 
                    </li>
 
                    <li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" data-hover="dropdown" href="project.html">Project</a>
 
  
                        <ul class="dropdown-menu">
+
<div class="parallax">
                            <li><a href="project.html#project1">Project 1</a></li>
+
<canvas style="width: 100%; height: 100%; z-index: -1;"></canvas>
                            <li><a href="project.html#project2">Project 2</a></li>
+
<div class="parallax-heading"><h1> Development of Novel Biocompatible Tissue for the Application as Artificial
                        </ul>
+
Muscles in
                    </li>
+
Robotics and
                    <li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" href="parts.html">Parts</a>
+
Medicine </h1>
                        <ul class="dropdown-menu">
+
</div>
                            <li><a href="parts.html#parts1">Parts 1</a></li>
+
</div>
                            <li><a href="parts.html#parts2">Parts 2</a></li>
+
                        </ul>
+
                    </li>
+
                    <li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" href="human_practices.html">Human Practices</a>
+
                        <ul class="dropdown-menu">
+
                            <li><a href="human_practices.html#practices1">Practices 1</a></li>
+
                            <li><a href="human_practices.html#practices2">Practices 2</a></li>
+
                        </ul>
+
                    </li>
+
                    <li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" href="safety.html">Safety</a>
+
                        <ul class="dropdown-menu">
+
                            <li><a href="safety.html#safety1">Safety 1</a></li>
+
                            <li><a href="safety.html#safety2">Safety 2</a></li>
+
                        </ul>
+
                    </li>
+
                    <li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" href="team.html">Team</a>
+
                        <ul class="dropdown-menu">
+
                            <li><a href="team.html#team1">Team 1</a></li>
+
                            <li><a href="team.html#team2">Team 2</a></li>
+
                        </ul>
+
                    </li>
+
  
                    <li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" href="awards.html">Awards</a>
+
<div class="light">
 
+
<h2>Abstract</h2>
                        <ul class="dropdown-menu">
+
<p>
                            <li><a href="awards.html#awards1">Awards 1</a></li>
+
The development of artificial muscles attracts wide interest for industrial and medical
                            <li><a href="awards.html#awards2">Awards 2</a></li>
+
applications. Regarding manufacturing, robotic devices with synthetic muscles are able to
                        </ul>
+
handle softer materials more precisely. Moreover, artificial musculatures in medical
                    </li>
+
prostheses can improve the wearing comfort while conveying a rather natural feeling.
                </ul>
+
Currently, muscle-like contractions can be obtained by capacitor systems or by molecular
            </div>
+
machines incorporating tissue. This project aims to replace the common materials in both
        </nav>
+
branches by biological tissue. While increasing ecological friendliness and the compatibility
        <div class="background" >
+
with human tissue, those fabricated compositions can compete with human biological
            <div class ="content">
+
material. <br> <br>
                <h2 class="jumptarget" id="home1">Development of Novel Biocompatible Tissue for the
+
Like a capacitor, the dielectric elastomer actuator (DEA) comprises two lightweight and
 
+
flexible electrodes separated by an insulating elastomeric layer. In a first set of experiments,
Application as Artificial Muscles in Robotics and Medicine</h2>
+
the elastomer layers in the capacitor-based muscle need to be replaced by appropriate protein
                <pre>The development of artificial muscles attracts wide interest for industrial and medical
+
structures. P-Pili with their excellent elastic properties and proteins with high amounts of
 
+
helical secondary architecture are to be tested for this approach. In a next step, the currently
applications. Regarding manufacturing, robotic devices with synthetic muscles are able to
+
used light weighted graphene or carbon nanotube layers need to be replaced by the Pili to
 
+
provide conductivity and flexibility comparable to the carbon nanotubes. Both fibril types can
handle softer materials more precisely. Moreover, artificial musculatures in medical
+
be easily expressed in Geobacter sulflurreducens and Escherichia coli in a large scale, which
 
+
makes the overall system extremely feasible since one organism can provide the whole
prostheses can improve the wearing comfort while conveying a rather natural feeling.
+
material. <br> <br>
 
+
Another tissue with muscle-like contractions will be fabricated through polymers with
Currently, muscle-like contractions can be obtained by capacitor systems or by molecular
+
integrated molecular machines. Herein, the latter are based on azo dyes capable of having
 
+
their entire network contracted by light irradiation. The biopolymer matrix is fabricated by
machines incorporating tissue. This project aims to replace the common materials in both
+
Escherichia coli and consists of catcher-tag systems modified with a biotin-accepting anchor.
 
+
The molecular machines attach to the biopolymer tissue via biotin and biotin acceptor
branches by biological tissue. While increasing ecological friendliness and the compatibility
+
interactions. Due to the crosslinking of the single protein strains the stiffness of the resulting
 
+
tissue can be adjusted accurately. <br> <br>
with human tissue, those fabricated compositions can compete with human biological
+
In both cases, the achieved tissues are cell-free and can immediately be adapted to the system.
 
+
Within the scope of the project, the construction of a DEA-prototype is planned, since the
material.
+
realization of electrical stimuli is more feasible than through photo-induced signals.
 
+
</p>
Like a capacitor, the dielectric elastomer actuator (DEA) comprises two lightweight and
+
</div>
 
+
<script type="text/javascript" src="https://2017.igem.org/Template:Erlangen_Nuremberg/Javascript?
flexible electrodes separated by an insulating elastomeric layer. In a first set of experiments,
+
action=raw&ctype=text/javascript"></script>
 
+
<script>
the elastomer layers in the capacitor-based muscle need to be replaced by appropriate protein
+
/* NAVIGATION STYLING */
 
+
$(document).ready(function() {
structures. P-Pili with their excellent elastic properties and proteins with high amounts of
+
var navbar = $($(".navbar")[0]);
 
+
navbar.addClass("transparent");
helical secondary architecture are to be tested for this approach. In a next step, the currently
+
$(window).scroll(function() {
 
+
var parallax = $($(".parallax")[0]);
used light weighted graphene or carbon nanotube layers need to be replaced by the Pili to
+
var parallaxBottom = parallax.offset().top + parallax.height();
 
+
var navbarBottom = $(window).scrollTop() + navbar.height() + 15;
provide conductivity and flexibility comparable to the carbon nanotubes. Both fibril types can
+
if (navbarBottom < parallaxBottom) {
 
+
navbar.addClass("transparent");
be easily expressed in Geobacter sulflurreducens and Escherichia coli in a large scale, which
+
} else {
 
+
navbar.removeClass("transparent");
makes the overall system extremely feasible since one organism can provide the whole
+
}
 
+
})
material.
+
})
 
+
</script>
Another tissue with muscle-like contractions will be fabricated through polymers with
+
 
+
integrated molecular machines. Herein, the latter are based on azo dyes capable of having
+
 
+
their entire network contracted by light irradiation. The biopolymer matrix is fabricated by
+
 
+
Escherichia coli and consists of catcher-tag systems modified with a biotin-accepting anchor.
+
 
+
The molecular machines attach to the biopolymer tissue via biotin and biotin acceptor
+
 
+
interactions. Due to the crosslinking of the single protein strains the stiffness of the resulting
+
 
+
tissue can be adjusted accurately.
+
 
+
In both cases, the achieved tissues are cell-free and can immediately be adapted to the system.
+
 
+
Within the scope of the project, the construction of a DEA-prototype is planned, since the
+
 
+
realization of electrical stimuli is more feasible than through photo-induced signals.
+
                </pre>
+
            </div>
+
        </div>
+
 
+
        <a class="jumptarget" href="home.html#home1">
+
                <span class="backtop glyphicon glyphicon-menu-up" style="color:white"></span>
+
        </a>
+
 
+
        <div id="impressum">
+
        </div>
+
 
+
    </body>
+
 
</html>
 
</html>
 +
{{Erlangen_Nuremberg/Footer}}

Latest revision as of 11:50, 10 July 2017

Development of Novel Biocompatible Tissue for the Application as Artificial Muscles in Robotics and Medicine

Abstract

The development of artificial muscles attracts wide interest for industrial and medical applications. Regarding manufacturing, robotic devices with synthetic muscles are able to handle softer materials more precisely. Moreover, artificial musculatures in medical prostheses can improve the wearing comfort while conveying a rather natural feeling. Currently, muscle-like contractions can be obtained by capacitor systems or by molecular machines incorporating tissue. This project aims to replace the common materials in both branches by biological tissue. While increasing ecological friendliness and the compatibility with human tissue, those fabricated compositions can compete with human biological material.

Like a capacitor, the dielectric elastomer actuator (DEA) comprises two lightweight and flexible electrodes separated by an insulating elastomeric layer. In a first set of experiments, the elastomer layers in the capacitor-based muscle need to be replaced by appropriate protein structures. P-Pili with their excellent elastic properties and proteins with high amounts of helical secondary architecture are to be tested for this approach. In a next step, the currently used light weighted graphene or carbon nanotube layers need to be replaced by the Pili to provide conductivity and flexibility comparable to the carbon nanotubes. Both fibril types can be easily expressed in Geobacter sulflurreducens and Escherichia coli in a large scale, which makes the overall system extremely feasible since one organism can provide the whole material.

Another tissue with muscle-like contractions will be fabricated through polymers with integrated molecular machines. Herein, the latter are based on azo dyes capable of having their entire network contracted by light irradiation. The biopolymer matrix is fabricated by Escherichia coli and consists of catcher-tag systems modified with a biotin-accepting anchor. The molecular machines attach to the biopolymer tissue via biotin and biotin acceptor interactions. Due to the crosslinking of the single protein strains the stiffness of the resulting tissue can be adjusted accurately.

In both cases, the achieved tissues are cell-free and can immediately be adapted to the system. Within the scope of the project, the construction of a DEA-prototype is planned, since the realization of electrical stimuli is more feasible than through photo-induced signals.

Sponsors

Foundations