Difference between revisions of "Team:Vilnius-Lithuania/Notebook"

(Prototype team page)
 
Line 1: Line 1:
{{Vilnius-Lithuania}}
 
 
<html>
 
<html>
 +
<link href="https://2017.igem.org/Template:Vilnius-Lithuania/CSSvendor?action=raw&ctype=text/css" rel="stylesheet"/>
 +
<link href="https://2017.igem.org/Template:Vilnius-Lithuania/CSSprod?action=raw&ctype=text/css" rel="stylesheet"/>
  
 +
</html>
  
<div class="column full_size">
+
{{Vilnius-Lithuania/navbar}}
  
<h1>Notebook</h1>
+
<html>
<p> Document the dates you worked on your project. This should be a detailed account of the work done each day for your project.</p>
+
 
 +
<div class="wrapper slider-page">
 +
 
 +
    <div class="container">
 +
        <div class="slider-box">
 +
            <div class="left-content">
 +
                <div class="slide-left-content slide-left-content-1 is-current">
 +
                    <div class="owl-carousel">
 +
                        <div class="slide slide-image" style="background-image: url('https://static.igem.org/mediawiki/2017/6/67/T--Vilnius-Lithuania--modeling.jpeg')"></div>
 +
                    </div>
 +
                </div>
 +
                <svg class="shape-overlays" viewBox="0 0 100 100" preserveAspectRatio="none">
 +
                    <path class="shape-overlays__path"></path>
 +
                    <path class="shape-overlays__path"></path>
 +
                    <path class="shape-overlays__path"></path>
 +
                </svg>
 +
            </div>
 +
            <div class="right-content">
 +
                <div class="slide-right-content slide-right-content-1 is-current">
 +
                    <h1>Modelling</h1>
 +
                    <p>The main objective of our model was to investigate how different RNA I concentrations affect plasmid copy number. We had to make sure that our theorized copy number control mechanism using RNA I expression modulation is viable to affirm the approach for reaching our framework goals.
 +
</p>
 +
                    <div class="readmore" data-modal="1">read more</div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <ul class="navigation">
 +
            <li><a href="/Team:Vilnius-Lithuania/Description">Description</a></li>
 +
            <li>
 +
                <a href="/Team:Vilnius-Lithuania/Design">Design and Results</a>
  
 +
            </li>
 +
            <li><a href="/Team:Vilnius-Lithuania/Model" class="active">Modelling</a></li>
 +
            <li><a href="/Team:Vilnius-Lithuania/Demonstrate">Proof of concept</a></li>
 +
            <li><a href="/Team:Vilnius-Lithuania/InterLab">Interlab</a></li>
 +
            <li><a href="/Team:Vilnius-Lithuania/Safety">Safety</a></li>
 +
        </ul>
 +
    </div>
 
</div>
 
</div>
<div class="clear"></div>
 
  
  
<div class="column half_size">
 
<h5>What should this page have?</h5>
 
<ul>
 
<li>Chronological notes of what your team is doing.</li>
 
<li> Brief descriptions of daily important events.</li>
 
<li>Pictures of your progress. </li>
 
<li>Mention who participated in what task.</li>
 
</ul>
 
  
 +
 +
<div class="modal modal-1">
 +
    <div class="modal-close"></div>
 +
    <div class="modal-content">
 +
<h1>Modelling</h1>
 +
 +
<p>Before starting the work in the wet lab, we wanted to make sure that our theorized copy number control mechanism using RNA I expression modulation is viable. It was crucial for us, because if model results were any different, we might have turned to another approach to reach our framework goals.</p>
 +
 +
<p>Our main objective was to investigate how different RNA I concentrations affect plasmid copy number, in order to know if this approach is applicable in the wet lab. We have mostly relied on Brendel et al. (1992), Tomizawa (1981), Brendel and Perelson (1993) as our literature sources. The modelling was performed using Matlab software suite.</p>
 +
 +
<h2>Overview and scheme of the model</h2>
 +
 +
<img src="https://static.igem.org/mediawiki/2017/c/cc/Schema.png" alt="temp">
 +
 +
<p>RNA II in the ColE1 system initiates plasmid replication by forming a RNA-DNA primer on the plasmid. RNA I is a counter transcript of RNA II and can inhibit the primer formation by forming a secondary three-stem-loop structure, which pairs these two molecules</p>
 +
 +
<p>First, RNA II forms an early complex with a plasmid. Early complex means that the RNA II transcript is not longer than 360 nucleotides and until it reaches that length it can be inhibited by RNA I. After reaching the critical length, pDNA-RNA II merges into a stable complex and then can proceed to forming a primer for replication initiation. If early RNA I bounds RNA II molecule in the initial transcript stage it can inhibit the replication by forming a duplex with RNA II. At first, early and unstable RNA I-RNA II complex is formed. After some time it becomes stable and RNA I-RNA II complex detaches from the plasmid, leaving that replication cycle inhibited.</p>
 +
 +
<h2>Species and initial concentrations</h2>
 +
 +
<table style="width:100%">
 +
<thead>
 +
<td align='center'>Species sign in ODE system</td>
 +
<td align='center'>Species</td>
 +
<td align='center'>Initial concentration (M)</td>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td align='center'>A</td>
 +
<td align='center'>pDNA+RNA I+RNAII early</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>B</td>
 +
<td align='center'>pDNA+RNA II short</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>RNAI</td>
 +
<td align='center'>RNA I</td>
 +
<td align='center'>1E-6</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>D</td>
 +
<td align='center'>pDNA+RNA II long</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>E</td>
 +
<td align='center'>pDNA+RNAII primer</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>F</td>
 +
<td align='center'>RNA II long</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>G</td>
 +
<td align='center'>pDNA</td>
 +
<td align='center'>4E-8*</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>H</td>
 +
<td align='center'>pDNA+RNA II+RNA I late</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>RNA II</td>
 +
<td align='center'>RNA II</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>J</td>
 +
<td align='center'>RNAI+RNAII</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<h6>*We have assumed that our simulation begins with half of the maximum expected wild type ColE1 plasmid concentration, because when parent cell divides, plasmid concentration reduces by 2 times.</h6>
 +
 +
<h2>ODE system</h2>
 +
 +
<p>
 +
$$A/dt = -k1*A + k3*B*RNAI - k4*A - k10*A +k11*H - µ*A\quad (1)$$
 +
$$B/dt = -k3*B*RNAI + k4*A - k5*B + k9*G - k15*B - µ*B\quad (2)$$
 +
$$RNAI/dt = -k3*B*RNAI + k4*A + k14*G - k16*RNAI  - µ*RNAI\quad (3)$$
 +
$$D/dt = k5*B - k6*D - k8*D - µ*D\quad (4)$$
 +
$$E/dt = k6*D - k7*E - µ*E\quad (5)$$
 +
$$F/dt = k7*E + k8*D - µ*F\quad (6)$$
 +
$$G/dt = 2*k7*E + k8*D - k9*G + k12*H - k17*G - µ*G\quad (7)$$
 +
$$H/dt = k10*A - k11*H - k12*H - µ*H\quad (8)$$
 +
$$RNAII/dt = -k9*G - k14*RNAII + k15*G - k17*RNAII - k18*RNAI*RNAII - µ*RNAII\quad (9)$$
 +
$$J/dt = k18*RNAI*RNAII - µ*J\quad (10)$$
 +
 +
</p>
 +
<br>
 +
 +
<table style="width:100%">
 +
<thead>
 +
<td align='center'>Constant</td>
 +
<td align='center'>Value</td>
 +
<td align='center'>Source</td>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td align='center'>$$K1 (M^{-1} * min^{-1})$$</td>
 +
<td align='center'>$$1.7*10^8$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K2 (min^{-1})$$</td>
 +
<td align='center'>$$0.17$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K3 (M^{-1} * min^{-1})$$</td>
 +
<td align='center'>$$1.02*10^8$$</td>
 +
<td align='center'>1E-6</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K4 (min^{-1})$$</td>
 +
<td align='center'>$$48$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K5 (min^{-1})$$</td>
 +
<td align='center'>$$12$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K6 (min^{-1})$$</td>
 +
<td align='center'>$$4.3$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K7 (min^{-1})$$</td>
 +
<td align='center'>$$3.8$$</td>
 +
<td align='center'>4E-8*</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K8 (min^{-1})$$</td>
 +
<td align='center'>$$4.3$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$ K9 (M^{-1} * min^{-1})$$</td>
 +
<td align='center'>$$0.25$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K10 (min^{-1})$$</td>
 +
<td align='center'>$$44$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K11 (min^{-1})$$</td>
 +
<td align='center'>$$0.085$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K12 (min^{-1})$$</td>
 +
<td align='center'>$$17$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K13 (min^{-1})$$</td>
 +
<td align='center'>$$34$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K14 (min^{-1})$$</td>
 +
<td align='center'>$$6$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K15 (min^{-1})$$</td>
 +
<td align='center'>$$19$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K16 (min^{-1})$$</td>
 +
<td align='center'>$$0.35$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K17 (M*min^{-1})$$</td>
 +
<td align='center'>$$0.35$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K18 (M^{-1}*min^{-1})$$</td>
 +
<td align='center'>$$1.02*10^8$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$µ (min^{-1})$$</td>
 +
<td align='center'>$$0.0231$$</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
 +
 
</div>
 
</div>
  
<div class="column half_size">
+
</html>
<h5>Inspiration</h5>
+
<p>You can see what others teams have done to organize their notes:</p>
+
  
<ul>  
+
<html>
<li><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Notebook">2014 ATOMS-Turkiye</a></li>
+
<script type="text/javascript" src="https://2017.igem.org/Template:Vilnius-Lithuania/JSvendor?
<li><a href="https://2014.igem.org/Team:Tec-Monterrey/ITESM14_project.html#tab_notebook">2014 Tec Monterrey</a></li>
+
action=raw&ctype=text/javascript"></script>
<li><a href="https://2014.igem.org/Team:Kyoto/Notebook/Magnetosome_Formation#title">2014 Kyoto</a></li>
+
<script type="text/javascript" src="https://2017.igem.org/Template:Vilnius-Lithuania/JSvendor2?
<li><a href="https://2014.igem.org/Team:Cornell/notebook">2014 Cornell</a></li>
+
action=raw&ctype=text/javascript"></script>
</ul>
+
<script type="text/javascript" src="https://2017.igem.org/Template:Vilnius-Lithuania/JSprod?
 +
action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
  
</div>
 
 
</html>
 
</html>

Revision as of 01:48, 2 November 2017

use keyboard, swipe or scroll

Modelling

The main objective of our model was to investigate how different RNA I concentrations affect plasmid copy number. We had to make sure that our theorized copy number control mechanism using RNA I expression modulation is viable to affirm the approach for reaching our framework goals.

read more