Difference between revisions of "Team:Shanghaitech/Model/full"

 
(19 intermediate revisions by 4 users not shown)
Line 2: Line 2:
 
{{Shanghaitech/css}}
 
{{Shanghaitech/css}}
 
{{Shanghaitech/js}}
 
{{Shanghaitech/js}}
 
 
<html>
 
<html>
<div id='main-content-wrapper'>
 
<div class="column half_size" id="content-block">
 
<h1>Model</h1>
 
<div class="column half_size">
 
  
 +
<head>
 +
    <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-MML-AM_CHTML"></script>
 +
    <script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$']]}});</script>
 +
</head>
 +
<script>$(window).load(function(){if(MathJax){console.log("MathJax loaded");}});</script>
 +
 +
<body>
 +
 +
    <div id="main-content-wrapper">
 +
        <div id="content-block">
 +
            <h1>Model</h1>
 +
            <h2>Introduction</h2>
 +
            <p> In this  model,  we  simplify  the  actual  biology  process  into  basic  model  that  only  remains  input  molecule, promotor,  transcription  gene,  mRNA,  goal  protein                                                                        and  output  molecule from both dynamic perspective and responding ability. In developed model, we consider different conditions including the population growth, diffusion of signal and decay of signal molecules in cells. which will have influence on our block. Finally, we completely construct the model of our block, which will instruct our experiment results and using of our system. Moreover, this model does some basic researches on population and new measurement methods. </p>
 +
            <h3>Aim</h3>
 +
            <ol start=''>
 +
                <li>Develop the dynamic model of genetic expression, which consider the influence of population of E.coli, diffusion of signal molecule and decay of signal molecules.</li>
 +
                <li>Solve the problem on parameter fitting in our experiments results.</li>
 +
                <li>Give a measurement method on determing the efficiency of signal converter.</li>
 +
                <li>Use both theoritical simulation and experiments results to indicate the main factor affecting the growth of E.coli.</li>
 +
                </ol>
 +
 +
            </ol>
 +
            <h3>Symbol</h3>
 +
            <table>
 +
                <thead>
 +
                    <tr>
 +
                        <th>Symbol</th>
 +
                        <th>Meaning</th>
 +
                    </tr>
 +
                </thead>
 +
                <tbody>
 +
                    <tr>
 +
                        <td>$v_{generate}$</td>
 +
                        <td>The generation efficency of mRNA</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$[X]$</td>
 +
                        <td>The concentration of substance $X$</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$g_{X}$</td>
 +
                        <td>The generation rate of substance $X$</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$\phi_{X}$</td>
 +
                        <td>The decay rate of substance $X$</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$V_{\max}$</td>
 +
                        <td>The maximum rate of generation</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$C_{saturated}$</td>
 +
                        <td>The saturated concentration</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$N_{\max}$</td>
 +
                        <td>The maximum population</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$r$</td>
 +
                        <td>Growth rate of E.coli</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$[S]_t$</td>
 +
                        <td>Function of signal molecule decay</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>$R(t)$</td>
 +
                        <td>Function of mRNA generate</td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
            <h3>Assumption</h3>
 +
            <ol start=''>
 +
                <li>mRNA and proteins will decay following Poisson distribution (equivalent to birth-and-death process)</li>
 +
                <li>All combinations of two proteins are considered as quick reactions (Only control by thermodynamics)</li>
 +
                <li>The constitutive promoter has a constant rate to transcript proteins.</li>
 +
                <li>All raw materials inside cells can be considered as constants.</li>
 +
 +
            </ol>
 +
            <h3>Basic Model</h3>
 +
            $$ \begin{aligned} \frac{d([mRNA])}{dt}&amp;=v_{generate}-\phi_{mRNA}[mRNA]\\ \frac{d([protein])}{dt}&amp;=g_{protein}[mRNA]-\phi_{protein}[protein]
 +
            \end{aligned} $$
 +
            <p>In these equations, $v_{generate}$ refers to the efficiency of mRNA transcription. $\phi$ refers to the degradation
 +
                rate of mRNA and protein. </p>
 +
            <p>The property of $v_{generate}$ depends on the promoter and the concentration of inducer molecule. If the promoter
 +
                is pcons, $v_{generate}$ is a constant. Otherwise, it will have a sensitive response to different concentration
 +
                of inducer molecule. This reponse can be expressed as following form:</p>
 +
            $$ v_{generate}([x])=V_{max}·(\frac{(1-\epsilon)·x^n}{k^n+x^n}+\epsilon) $$
 +
            <p>$k$ refers to the dissociation constant and $x$ refers to the concentration of inducer concentration. $\epsilon$
 +
                refers to the leakage of genetic expression.</p>
 +
            <p>In comparision, for NOR GATE, the repression of inducer molecule can be expressed as similar form:</p>
 +
            $$ v_{generate}([x])=V_{max}·(\frac{1-\epsilon}{1^n+(\frac{x}{k})^n}+\epsilon) $$
 +
            <p>For specific concerntration, $v_{generate}$ is a constant, otherwise it is a function of $[x]$</p>
 +
            <p>The generated protein is used to produce new signal molecule, which play a role as enzyme. Different from Michaelis-Menten
 +
                equation, our protein (in other words, enzyme) will degradate while producing new siginal molecule, So this
 +
                fact should be considered into our fundmental model.</p>
 +
            <p>Mathematical expression for producing new signal molecule:</p>
 +
            $$ \begin{aligned} \frac{d[EAB]}{dt}&amp;=k_1[E][A][B]-(k_1+k_{-1})[EAB]\\ \frac{d[M_{signal}]}{dt}&amp;=k_2[EAB] \end{aligned}
 +
            $$
 +
            <h3>Developed Model</h3>
 +
            <h4>Growth of E.coli</h4>
 +
            <p>In the developed model, we first take the growth of E.coli into consideration. The growth of E.coli can not only
 +
                fluctuate the concentration of both reactants and products, but also an important variable in calculate final
 +
                concentration of products. This model is based on this two fundamental relation:</p>
 +
            $$ \begin{aligned} Total&amp;=Concentration·Volumel\\ Volume&amp;=N_{E.coli}·V_{E.coli}\\ \frac{d([protein]·Volume)}{dt}&amp;=g_{protein}[mRNA]·Volume-\phi_{protein}[protein]·Volume
 +
            \end{aligned} $$
 +
            <p>Correspondingly, it is same to equation for mRNA expression:</p>
 +
            $$ \frac{d([mRNA])·Volume}{dt}=v_{generate}·Volume-\phi_{mRNA}[mRNA]·Volume\\ $$
 +
            <p>$N_{E.coli}$ is a function used to show the population of E.coli, $V_{E.coli}$ refers to the volume of every
 +
                E.coli, as a constant. So we can divide out the constant $V_{E.coli}$ on both sides of every equations, and
 +
                take derivative formula:
 +
            </p>
 +
            $$ \frac{d[protein]}{dt}·N_{E.coli}+\frac{dN_{E.coli}}{dt}·[protein]=g_{protein}[mRNA]·N_{E.coli}-\phi_{protein}[protein]·N_{E.coli}
 +
            $$
 +
            <p>Simplify this equation into following form:</p>
 +
            $$ \frac{d[protein]}{dt}=g_{protein}[mRNA]-(\phi_{protein}+\frac{N_{E.coli}&#39;}{N_{E.coli}})[protein]\\ N_{E.coli}&#39;=\frac{dN_{E.coli}}{dt}
 +
            $$
 +
            <p>$N_{E.coli}$ is satisfied to following equation:</p>
 +
            $$ \begin{aligned} \frac{dN_{E.coli}}{dt}&amp;=rN_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}})\\ N_{E.coli}&amp;=\frac{N_{\max}}{1+(\frac{N_{\max}}{N_{t=0}}-1)·e^{-rt}}
 +
            \end{aligned} $$
 +
            <p>$r$ refers to growth rate of E.coli and $N_{\max}$ refers to the limits of E.coli population. Since $N_{\max}$
 +
                and $N_{t=0}$are constants, so we define following parameter:</p>
 +
            $$ \frac{N_{\max}}{N_{t=0}}-1=N_{c} $$
 +
            <p>And $\frac{N'}{N}$ equals:</p>
 +
            $$ \frac{N&#39;}{N}=\frac{N_cre^{-rt}}{1+N_ce^{-rt}} $$
 +
            <p></p>
 +
            <p>From our experiments, we find there are another two possible factors affecting the production of our system.
 +
                First one is diffusion of signal molecule at initial time, the other one is the decay of signal molecule
 +
                with the time flying.</p>
 +
            <h4>Diffusion of signal molecule at initial time</h4>
 +
            <p>The concentration of signal is always considered to diffuse into E.coli very rapidly. But from our data, we find
 +
                that the initial part of our dynamic curve is not fitting to our basic model. Our basic model indicates that
 +
                the rate of generating will decrease with the time flying, but the experiment shows that the velocity will
 +
                have a short rise at initial time and then decrease as the way predicted by basic model. Therefore, we take
 +
                process of diffusion into consideration. Because at very beginning, the concentration of signal in E.coli
 +
                is very low, and then it will rise by diffusion, so the efficiency of production will rise according to time
 +
                in a short time period.</p>
 +
            <p>We suppose the initial concentration difference between inside of E.coli and outside is $\Delta c(0)$, also we
 +
                know the time for E.coli to balence this difference:</p>
 +
            $$ c(t)= C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}} $$
 +
            <p>So the generating efficency comes to:</p>
 +
            $$ v_{generate} = \frac{V_{\max}}{1+(\frac{k}{ C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}}})^n} $$
 +
            <p>And we will use this formula to simulate initial state.</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/8/85/T--Shanghaitech--modelfig5fx.gif'
 +
                    alt='扩散浓度对时间的响应' /></p>
 +
            <p>The demo is shown above which is a Log linear plot. X-axis refers to the time, Y-axis refers to the generating
 +
                efficiency. We can easily figure out the concentration will rapidly get to steady state and remains to a
 +
                constant. Therefore, it will only affect the inital transcription efficiency.</p>
 +
            <h4>Decay of signal molecule</h4>
 +
            <p>In basic model, we consider the decay of signal can be neglected because we found there&#39;s no significant
 +
                difference between concentration in vitro. But actually when we meature the approximately concentration in the LB
 +
                with E.coli, we found that the concentration has a linear deacrease through time, which we should take consideration
 +
                into our model. </p>
 +
            <p>The decay can be shown as following equation:</p>
 +
            $$ [S]_t=[S]_{initial}-k_{decay}t $$
 +
            <p>And the $v_{generate}$ becomes to:</p>
 +
            $$ v_{generate}= V_{\max}\frac{([S]_t)^n}{k^n+([S]_t)^n} $$
 +
            <p>To illustrate the change taken by the decompose of signal molecule, we can see following simulation curves:</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/b/b9/T--Shanghaitech--modelfig4fx.gif' alt='1-10' /></p>
 +
            <p>X-axis refers to time. We find the efficiency will not be disturbed greatly at initial time, and will have a
 +
                rapid decrease when the concentration equals to the half of origin. This property shows that we should control
 +
                the reaction time otherwise the production will decay without production with the time going by. So the main
 +
                purpose of this model is to predict when we dilute the input signal solution to obtain the maximum of protein
 +
                to convert out signal.</p>
 +
            <h4>Extra model</h4>
 +
            <p>This part will discuss an interesting model on how the signal molecule affect the growth and population. The
 +
                reason why we care about this question is that we measured the OD600 under different circumstance and found
 +
                some special relation between the concentration and the population. In breif, with the rise of concentration,
 +
                the population will decrease. We wonder the mechanism and propse two hypothesis:</p>
 +
            <ol start=''>
 +
                <li>
 +
                    <p>The signal molecule is toxic to E.coli, so the population will decrease related to the increase of concentration
 +
                        linearly.
 +
                    </p>
 +
                </li>
 +
                <li>
 +
                    <p>The signal molecule induce the synthesis of GFP which occupy the substance that is originally used for
 +
                        growth. It indicates that if the GFP is produced, then the population will be at low level, otherwise
 +
                        the population will be at normal level.</p>
 +
                    <p>In our model, we indicates the second hypothesis is more realistic.</p>
 +
                </li>
 +
 +
            </ol>
 +
            <h2>Parameter fitting and simulation</h2>
 +
            <h3>Hill equation</h3>
 +
            <p>To get the parameter of Hill equation through our data, we tranfer Hill equation to following form:</p>
 +
            $$ \begin{aligned} Hill\ equation&amp;:y=V_{max}\times\frac{x^n}{k^n+x^n}\\ New\ form&amp;:\log{\frac{\frac{y}{V_{max}}}{1-\frac{y}{V_{max}}}}=n\log{x}-n\log{k}
 +
            \end{aligned} $$
 +
            <p>In this form, we can get easily get a linear relation between our input concerntration and output GFP. The question
 +
                is how to find out $V_{max}$ in this equation because this value determine the reprocessed data of output.
 +
                Another question is, due to the large scale of our data, to ease the workload of proceesing such data. To
 +
                meet the needs of these two question, first we let each output data substract the minimum among all output
 +
                data, and define the ratio between each processed output data and the maximum of all output data as the standard
 +
                output. (NOTICE: The minimum data of this output data set can be the control.)As following shows:</p>
 +
            $$ {output}={y_1,y_2,···,y_n} $$ $$ SY_{output}=\{y_1&#39;,y_2&#39;,···,y_n&#39;\}\quad which\quad y_i=\frac{y_i-\min{Y_{output}}}{\max{Y_{output}}-\min{Y_{output}}}
 +
            $$
 +
            <p>The elements in $SY_{output}$ fit following equation:</p>
 +
            $$ \log{\frac{{y_i&#39;}\frac{\max{Youtput}-\min{Y_{output}}}{V_{max}}}{1-{y_i&#39;}\frac{\max{Y_{output}}-\min{Y_{output}}}{V_{max}}}}=n\log{x_i}-n\log{k}
 +
            $$
 +
            <p>We define the value of $\frac{V_{max}}{\max{Youtput}-\min{Y_{output}}}$ as a parameter $PV_{max}$. So the equation
 +
                we actually simulate is following one:</p>
 +
            $$ \log{\frac{y_i&#39;}{PV_{max}-y_i&#39;}}=n\log{x_i}-n\log{k} $$
 +
            <p>​ We use Mathematica as fitting tools, the following code is shown:</p>
 +
            <pre class="md-fences md-end-block" lang="mathematica"> <div class="CodeMirror cm-s-inner CodeMirror-wrap"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 4px;"></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 0px; margin-bottom: 0px; border-right-width: 30px; min-height: 358px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: 0px; width: 0px;"></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">outputdata</span> <span class="cm-operator">=</span> <span class="cm-bracket">{</span><span class="cm-keyword">output1</span><span class="cm-operator">,</span> <span class="cm-keyword">output2</span><span class="cm-operator">,</span> <span class="cm-keyword">output3</span><span class="cm-operator">,</span> <span class="cm-keyword">output4</span><span class="cm-operator">,</span> <span class="cm-keyword">output5</span><span class="cm-operator">,</span><span class="cm-keyword">output6</span><span class="cm-bracket">}</span><span class="cm-operator">;</span></span></pre></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">Processeddata</span> <span class="cm-operator">=</span> <span class="cm-bracket">(</span><span class="cm-keyword">outputdata</span> <span class="cm-operator">-</span> <span class="cm-keyword">Min</span><span class="cm-bracket">[</span><span class="cm-keyword">outputdata</span><span class="cm-bracket">])</span><span class="cm-operator">/</span><span class="cm-bracket">(</span><span class="cm-keyword">Max</span><span class="cm-bracket">[</span><span class="cm-keyword">outputdata</span><span class="cm-bracket">]</span> <span class="cm-operator">-</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; &nbsp;<span class="cm-keyword">Min</span><span class="cm-bracket">[</span><span class="cm-keyword">outputdata</span><span class="cm-bracket">])</span> <span class="cm-operator">//</span> <span class="cm-keyword">N</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">data</span><span class="cm-operator">'</span> <span class="cm-operator">=</span> <span class="cm-bracket">{{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">9</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> <span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">1</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">8</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">7</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">3</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">6</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">4</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">5</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> <span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">5</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span><span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">4</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> <span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">6</span><span class="cm-bracket">]]}}</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">data</span> <span class="cm-operator">=</span> <span class="cm-bracket">{{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">1</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> <span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">1</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">2</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">2</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">3</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> <span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">3</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">4</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">4</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">5</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> <span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">5</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">6</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> <span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">6</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}}</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">solu</span> <span class="cm-operator">=</span> <span class="cm-keyword">Flatten</span><span class="cm-bracket">[</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; <span class="cm-keyword">Solve</span><span class="cm-bracket">[</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[(</span><span class="cm-keyword">y</span><span class="cm-operator">*</span><span class="cm-keyword">PVmax</span><span class="cm-bracket">)</span><span class="cm-operator">/</span><span class="cm-bracket">(</span><span class="cm-number">1</span> <span class="cm-operator">-</span> <span class="cm-bracket">(</span><span class="cm-keyword">y</span><span class="cm-operator">*</span><span class="cm-keyword">PVmax</span><span class="cm-bracket">))]</span> <span class="cm-operator">==</span> <span class="cm-keyword">n</span><span class="cm-operator">*</span><span class="cm-keyword">x</span> <span class="cm-operator">-</span> <span class="cm-keyword">n</span><span class="cm-operator">*</span><span class="cm-keyword">logk</span><span class="cm-operator">,</span> <span class="cm-keyword">y</span><span class="cm-bracket">]]</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">fitparameter</span> <span class="cm-operator">=</span> <span class="cm-bracket">(</span><span class="cm-keyword">FindFit</span><span class="cm-bracket">[</span><span class="cm-keyword">data</span><span class="cm-operator">,</span> <span class="cm-keyword">y</span> <span class="cm-operator">/.</span> <span class="cm-keyword">solu</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">PVmax</span><span class="cm-operator">,</span> <span class="cm-keyword">logk</span><span class="cm-operator">,</span> <span class="cm-keyword">n</span><span class="cm-bracket">}</span><span class="cm-operator">,</span> <span class="cm-keyword">x</span><span class="cm-bracket">])</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">fit</span> <span class="cm-operator">=</span> <span class="cm-keyword">y</span> <span class="cm-operator">/.</span> <span class="cm-keyword">solu</span> <span class="cm-operator">/.</span> <span class="cm-keyword">fitparameter</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">Show</span><span class="cm-bracket">[</span><span class="cm-keyword">ListPlot</span><span class="cm-bracket">[</span><span class="cm-keyword">data</span><span class="cm-operator">,</span> <span class="cm-keyword">PlotStyle</span> <span class="cm-operator">-&gt;</span> <span class="cm-keyword">Red</span><span class="cm-bracket">]</span><span class="cm-operator">,</span> <span class="cm-keyword">Plot</span><span class="cm-bracket">[</span><span class="cm-keyword">fit</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">x</span><span class="cm-operator">,</span> <span class="cm-operator">-</span><span class="cm-number">10</span><span class="cm-operator">,</span> <span class="cm-number">0</span><span class="cm-bracket">}]]</span></span></pre></div></div></div></div></div><div style="position: absolute; height: 30px; width: 1px; border-bottom: 0px solid transparent; top: 358px;"></div><div class="CodeMirror-gutters" style="display: none; height: 388px;"></div></div></div></pre>
 +
            <p>Example and its output is shown (NOTICE: This example is the fitting curve of the Tra with its limited five data.
 +
                Actually most of our data, except for tra, has six inputs and outputs, so the original code, which is shown
 +
                above, has six outputs. When we use this code, we can just import outputs into &quot;outputdata&quot; list
 +
                and run this programm. ):
 +
            </p>
 +
            <pre class="md-fences md-end-block" lang="mathematica"> <div class="CodeMirror cm-s-inner CodeMirror-wrap"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 4px;"></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 0px; margin-bottom: 0px; border-right-width: 30px; min-height: 336px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: 0px; width: 0px;"></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">outputdata</span> <span class="cm-operator">=</span> <span class="cm-bracket">{</span><span class="cm-number">16141</span><span class="cm-operator">,</span> <span class="cm-number">6812</span><span class="cm-operator">,</span> <span class="cm-number">32977</span><span class="cm-operator">,</span> <span class="cm-number">362525</span><span class="cm-operator">,</span> <span class="cm-number">959405</span><span class="cm-bracket">}</span><span class="cm-operator">;</span></span></pre></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">Processeddata</span> <span class="cm-operator">=</span> <span class="cm-bracket">(</span><span class="cm-keyword">outputdata</span> <span class="cm-operator">-</span> <span class="cm-keyword">Min</span><span class="cm-bracket">[</span><span class="cm-keyword">outputdata</span><span class="cm-bracket">])</span><span class="cm-operator">/</span><span class="cm-bracket">(</span><span class="cm-keyword">Max</span><span class="cm-bracket">[</span><span class="cm-keyword">outputdata</span><span class="cm-bracket">]</span> <span class="cm-operator">-</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; &nbsp;<span class="cm-keyword">Min</span><span class="cm-bracket">[</span><span class="cm-keyword">outputdata</span><span class="cm-bracket">])</span> <span class="cm-operator">//</span> <span class="cm-keyword">N</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">data</span><span class="cm-operator">'</span> <span class="cm-operator">=</span> <span class="cm-bracket">{{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">9</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> <span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">1</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">8</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">7</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">3</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">6</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">4</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[</span><span class="cm-number">10</span><span class="cm-operator">^</span><span class="cm-bracket">(</span><span class="cm-operator">-</span><span class="cm-number">5</span><span class="cm-bracket">)]</span><span class="cm-operator">,</span> <span class="cm-keyword">Processeddata</span><span class="cm-bracket">[[</span><span class="cm-number">5</span><span class="cm-bracket">]]}}</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">data</span> <span class="cm-operator">=</span> <span class="cm-bracket">{{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">1</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> <span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">1</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">2</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">2</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">3</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> <span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">3</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">4</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> </span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp;<span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">4</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">5</span><span class="cm-operator">,</span> <span class="cm-number">1</span><span class="cm-bracket">]]</span><span class="cm-operator">,</span> <span class="cm-keyword">data</span><span class="cm-operator">'</span><span class="cm-bracket">[[</span><span class="cm-number">5</span><span class="cm-operator">,</span> <span class="cm-number">2</span><span class="cm-bracket">]]}}</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">solu</span> <span class="cm-operator">=</span> <span class="cm-keyword">Flatten</span><span class="cm-bracket">[</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; <span class="cm-keyword">Solve</span><span class="cm-bracket">[</span><span class="cm-keyword">Log10</span><span class="cm-bracket">[(</span><span class="cm-keyword">y</span><span class="cm-operator">*</span><span class="cm-keyword">PVmax</span><span class="cm-bracket">)</span><span class="cm-operator">/</span><span class="cm-bracket">(</span><span class="cm-number">1</span> <span class="cm-operator">-</span> <span class="cm-bracket">(</span><span class="cm-keyword">y</span><span class="cm-operator">*</span><span class="cm-keyword">PVmax</span><span class="cm-bracket">))]</span> <span class="cm-operator">==</span> <span class="cm-keyword">n</span><span class="cm-operator">*</span><span class="cm-keyword">x</span> <span class="cm-operator">-</span> <span class="cm-keyword">n</span><span class="cm-operator">*</span><span class="cm-keyword">logk</span><span class="cm-operator">,</span> <span class="cm-keyword">y</span><span class="cm-bracket">]]</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">fitparameter</span> <span class="cm-operator">=</span> <span class="cm-bracket">(</span><span class="cm-keyword">FindFit</span><span class="cm-bracket">[</span><span class="cm-keyword">data</span><span class="cm-operator">,</span> <span class="cm-keyword">y</span> <span class="cm-operator">/.</span> <span class="cm-keyword">solu</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">PVmax</span><span class="cm-operator">,</span> <span class="cm-keyword">logk</span><span class="cm-operator">,</span> <span class="cm-keyword">n</span><span class="cm-bracket">}</span><span class="cm-operator">,</span> <span class="cm-keyword">x</span><span class="cm-bracket">])</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">fit</span> <span class="cm-operator">=</span> <span class="cm-keyword">y</span> <span class="cm-operator">/.</span> <span class="cm-keyword">solu</span> <span class="cm-operator">/.</span> <span class="cm-keyword">fitparameter</span><span class="cm-operator">;</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">Show</span><span class="cm-bracket">[</span><span class="cm-keyword">ListPlot</span><span class="cm-bracket">[</span><span class="cm-keyword">data</span><span class="cm-operator">,</span> <span class="cm-keyword">PlotStyle</span> <span class="cm-operator">-&gt;</span> <span class="cm-keyword">Red</span><span class="cm-bracket">]</span><span class="cm-operator">,</span> <span class="cm-keyword">Plot</span><span class="cm-bracket">[</span><span class="cm-keyword">fit</span><span class="cm-operator">,</span> <span class="cm-bracket">{</span><span class="cm-keyword">x</span><span class="cm-operator">,</span> <span class="cm-operator">-</span><span class="cm-number">10</span><span class="cm-operator">,</span> <span class="cm-number">0</span><span class="cm-bracket">}]]</span></span></pre></div></div></div></div></div><div style="position: absolute; height: 30px; width: 1px; border-bottom: 0px solid transparent; top: 336px;"></div><div class="CodeMirror-gutters" style="display: none; height: 366px;"></div></div></div></pre>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/5/5a/T--Shanghaitech--Parameterfitting1.png' alt='img' /></p><p> Then we
 +
                can get the meaningful parameter from these data quickly and easily.</p>
 +
            <h3>Simulation of Signal Producing</h3>
 +
            <h4>The Efficiency of Signal Converter</h4>
 +
            <p>​ How we can measure the working efficiency of our signal converter is an important question for us. As we all
 +
                know, the reason why we use GFP to reflect the efficiency of promoter is that we can measure fluoresence
 +
                easily and establish the quantity relationship between GFP expression and input signal concentration. But
 +
                when it comes to some other products such as small molecule, they are hard to measure exactly. We use LC-MS
 +
                to indicate the production of our signal converter roughly, but this data is too rough to instruct our following
 +
                work. So we will use our model to obtain the parameter of converter indirectly by following experiments and
 +
                deduction from model. </p>
 +
            <p>​ We symbol $S_1,S_2$ as the concentrations of two signal molecules, signal one and signal two, $GFP$ as the
 +
                result of fluroesence intensity. </p>
 +
            <p>​ We propose two experiments. First one is using signal two to induce the expression of GFP. We take its results
 +
                as standard curve. The other experiment is using signal one to obtain signal two, and we use signal two to
 +
                induce the expression of gene. Also we will have following data:</p>
 +
            $$ \begin{aligned} S_1&amp;=\{c_1,c_2,···,c_n\}\\ GFP&amp;=\{F_1,F_2,···,F_n\} \end{aligned} $$
 +
            <p>​ From our model we know the relationship among $S_1,S_2$ and $GFP$ at steady state as following:</p>
 +
            $$ \begin{aligned} GFP&amp;=V_{max}·(\frac{(1-\epsilon_1)·{S_2}^n}{k_1^n+{S_2}^n}+\epsilon_1)\\ S_2&amp;=V_{max}·(\frac{(1-\epsilon_2)·{S_1}^m}{k_2^m+{S_1}^m}+\epsilon_2)
 +
            \end{aligned} $$
 +
            <p>​ From the parameter fitting model, we can determine all parameters in $GFP-S_2$ curve. Therefore, we can use
 +
                this curve and data of GFP from second experiment to obtain the input signal two concentration. </p>
 +
            $$ F_i=V_{max}·(\frac{(1-\epsilon_1)·{[S_2]_i}^n}{k_1^n+{[S_2]_i}^n}+\epsilon_1)\\ F&#39;_i=\frac{F_i-\epsilon_1}{1-\epsilon_1}
 +
            \\\Longleftrightarrow\log{[S_2]_i}=\frac{\log{\frac{F_i&#39;}{V_1-F_i&#39;}}}{n}+\log{k_1} $$
 +
            <p>​ So we have the data $[S_2]_i$ related to input concentration of signal one, so we can get the relation through
 +
                using parameter-fitting model would get the parameter of $S_1-S_2$ curve finally.<br/></p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/2/28/T--Shanghaitech--Model-Final-test-of-simulation-2.png' alt='Final test  of simulation 2'
 +
                /></p>
 +
            <p>​ x-axis refers to Log of input signal molecular concentration; y-axis refers to the relative GFP expression.</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/b/b7/T--Shanghaitech--measure.png' alt='measure' /></p>
 +
            <p>​ x-axis refers to Log of signal one molecular concentration; y-axis refers to signal two molecular concentration.
 +
                This curve indicates the effciency of signal converter, which low concentrations of input signal generate
 +
                less output signal and high concentrations of input signal generate high output signal concentrations of
 +
                input signal. And there exists a significant drop between low expression and high expression. It is absolutely
 +
                what we want!</p>
 +
            <h4>Rough schematic diagram</h4>
 +
            <p>This is the concentration curve of protein related to time</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/a/a7/T--Shanghaitech--modelfig7fx.gif' alt='E' /></p>
 +
            <p>This is the concentration curve of protein complex related to time</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/e/e5/T--Shanghaitech--modelfig6fx.gif' alt='EAB' /></p>
 +
            <p>This is the concentration curve of producing signal molecule related to time</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/f/f0/T--Shanghaitech--modelfig3fx.gif' alt='Signal' /></p>
 +
            <h3>Simulation of NOR GATE</h3>
 +
            <h4>Rough schematic diagram</h4>
 +
            <p>This is the concentration curve of produced signal molecule related to time</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/2/2c/T--Shanghaitech--nor1fx.gif' alt='NOR' /></p>
 +
            <h2>Theoretical Calculation</h2>
 +
            <h3>Solution to ODE</h3>
 +
            <p>The core of our model is to solve following equation and find parameters from experiments:</p>
 +
            $$ \frac{dy}{dt}+P(t)y=Q(t) $$
 +
            <p>The solution can be decomposed to two parts:</p>
 +
            $$ \begin{aligned} \frac{dy}{dt}+P(t)y&amp;=0\\ \frac{dy_{s}}{dt}+P(t)y_{s}&amp;=Q(t) \end{aligned} $$
 +
            <p>From fisrt equation we will get:</p>
 +
            $$ y=Ce^{-\int P(t)\,dt} $$
 +
            <p>How can we use the solution to first equation to solve second equation? The answer is to transfer constant $C$
 +
                into a function related to $t$. And the derivative will become to following formula:</p>
 +
            $$ \begin{aligned} \frac{dy}{dt}&amp;=C(t)·(-P(t))·e^{-\int P(t)\,dt}+C&#39;(t)·e^{-\int P(t)\,dt}\\ \Longrightarrow \frac{dy}{dt}+P(t)y&amp;=C&#39;(t)·e^{-\int
 +
            P(t)\,dt}\\ \Longrightarrow Q(t)&amp;=C&#39;(t)·e^{-\int P(t)\,dt}\\ \Longrightarrow C(t)&amp;=\int Q(t)·e^{\int
 +
            P(t)\,dt}\,dt+C \end{aligned} $$
 +
            <p>Therefore, the solution to second equation is:</p>
 +
            $$ e^{-\int P(t)\,dt}(\int Q(t)·e^{\int P(t)\,dt}\,dt+C) $$
 +
            <p>The difficulty is how we can use such a complex function in next differential equation? Actually we probably
 +
                cannot get the analytic result of the integral, so it seems impossible to get an exact function for protein
 +
                concentration. Fortunately, there are still some special properties in our function which wll help us to
 +
                get a relative solution.</p>
 +
            <p>We start from the function of mRNA. Since $P(t)$ is a constant in our first equation, we can directly give the
 +
                result:</p>
 +
            $$ [mRNA]= e^{-\phi_{mRNA}t}(\int Q(t)·e^{\phi_{mRNA}t}dt+C) $$
 +
            <p>Now we solve following differetial equation:</p>
 +
            $$ \frac{d([protein])}{dt}+\phi_{protein}[protein]=g_{protein}[mRNA] $$
 +
            <p>Or for simplicity, we use:</p>
 +
            $$ \frac{dy}{dt}+\phi_2·y=g·R(t) $$
 +
            <p>According to the differential operator method, we get:</p>
 +
            $$ \begin{aligned} (D+\phi_2)y^\ &amp;=g·R(t)\\ \Longleftrightarrow y^*&amp;=\frac{1}{D+\phi_2}·g·R(t)\\ \Longleftrightarrow
 +
            y^*&amp;=\frac{1}{\phi_2}·(1-(\frac{D}{\phi_2})+(\frac{D}{\phi_2})^2-···)·g·R(t)\\ \Longleftrightarrow y^*&amp;=\frac{1}{\phi_2}·(1-\frac{1}{\phi_2}\frac{d}{dt}+\frac{1}{\phi_2^2}\frac{d^2}{dt^2}-···)·g·R(t)
 +
            \end{aligned} $$
 +
            <p>For $R(t)$, we write the general form:</p>
 +
            $$ R(t)=e^{-\phi t}(\int Q(t)e^{\phi t}dt+C) $$
 +
            <p>When we take derivation:</p>
 +
            $$ R&#39;(t)=(-\phi)·e^{-\phi t}(\int Q(t)e^{\phi t}dt)+e^{-\phi t} Q(t)e^{\phi t}+C·(-\phi)·e^{-\phi t}\\ \Longleftrightarrow
 +
            R&#39;(t)=(-\phi)R(t)+Q(t) $$
 +
            <p>Furthermore:</p>
 +
            $$ \begin{aligned} R^{(n)}(t)&amp;=(-\phi)R^{(n-1)}(t)+Q^{(n-1)}(t)\\ R^{(n)}(t)&amp;=(-\phi)^n·R(t)+\sum_{k=1}^{n}k^{n-k}Q^{(k)}(t)
 +
            \end{aligned} $$
 +
            <p>REMARK:</p>
 +
            $$ f^{(n)}(t)=\frac{d^nf}{dt^n} $$
 +
            <p>Therefore we get:</p>
 +
            $$ y^*=\frac{g}{\phi_2}·(\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^iR(t)+\sum_{k=1}^{i}(\frac{\phi_1}{\phi_2})^{i}·(\phi_1)^{-k}·Q^{(k)}(t))\\
 +
            \Longrightarrow y=\frac{g}{\phi_2}·(\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^iR(t)+\sum_{k=1}^{i}(\frac{\phi_1}{\phi_2})^{i}·(\phi_1)^{-k}·Q^{(k)}(t))+A^*·e^{-\phi_2
 +
            t} $$
 +
            <p>The first summation is simple:</p>
 +
            $$ \sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^iR(t)=\frac{\phi_2}{\phi_2-\phi_1}R(t) $$
 +
            <p>Second summation is really complex, so we must do some approximation:</p>
 +
            $$ \begin{aligned} &amp;\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^{i}\sum_{k=1}^{i}(\phi_1)^{-k}·Q^{(k)}(t)\\ =&amp;\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^{i}(\phi_1)^{-1}·\frac{d}{dt}Q(t)\\
 +
            =&amp;\frac{\phi_2}{\phi_1(\phi_2-\phi_1)}·\frac{d}{dt}Q(t) \end{aligned} $$
 +
            <p>Therefore we get a approximation of protein&#39;s concentration:</p>
 +
            $$ [protein]=\frac{\phi_2}{\phi_2-\phi_1}e^{-\phi_{mRNA}t}(\int Q(t)·e^{\phi_{mRNA}t}dt+C)+\frac{\phi_2}{\phi_1(\phi_2-\phi_1)}·\frac{d}{dt}Q(t)+A^*·e^{-\phi_2
 +
            t} $$
 +
            <h3>Solution to Our Model</h3>
 +
            <h4>Details of Developed Model</h4>
 +
            <h5>Growth of E.coli</h5>
 +
            <p>We combine this solution with our equation, and then we get:</p>
 +
            $$ \begin{aligned} \left[mRNA\right]&amp;=e^{-\int(\phi_{mRNA}+\frac{r·N_c}{N_c+e^{rt}})\,dt}·(\int v_{generate}·e^{\int(\phi_{mRNA}+\frac{r·N_c}{N_c+e^{rt}})\,dt}\,dt+C_0)\\
 +
            \left[protein\right]&amp;=e^{-\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}·(\int g_{protein}\left[mRNA\right]·e^{\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}\,dt+C_0&#39;)
 +
            \end{aligned} $$
 +
            <p>We suppose that:</p>
 +
            $$ N_c(t)=1+N_c·e^{-rt} $$
 +
            <p>Therefore we get:</p>
 +
            $$ [mRNA]=C_1·v_{generate}·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt+C_1·C_0N_c(t)·e^{-\phi_{mRNA}t}
 +
            $$
 +
            <p>As a special case, this is used to decribe if the growth of E.coli is at a steady state:</p>
 +
            $$ \lim_{n\to\infty}N_c(t)=1 $$
 +
            <p>Then we get a simple formula:</p>
 +
            $$ [mRNA]=A·v_{generate}+C·e^{-\phi_{mRNA} t} $$
 +
            <p>Further more, we define:</p>
 +
            $$ \begin{aligned} A(t)&amp;=C_1·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt\\ C(t)&amp;=C_1·C_0N_c(t)\\
 +
            [mRNA]&amp;=A(t)·v_{generate}+C(t)·e^{-\phi_{mRNA} t} \end{aligned} $$
 +
            <p>Consider the inital value of mRNA, we get following relation:</p>
 +
            $$ A(0)v_{generate}+C(0)=0 $$
 +
            <p>Now let&#39;s have a look on this special function and related integration:</p>
 +
            $$ A(t)=C_1·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt\\ N_c(t)=1+N_c·e^{-rt}\\ N_c=\frac{N_{\max}}{N_{t=0}}-1
 +
            $$
 +
            <p>We can hardly get an analytic solution to this integration theoritically, but we can do some transformation on
 +
                $N_c(t)$, which helps us solve this problem partly according to this fact:</p>
 +
            $$ If\quad|x|&lt;1\\Then\quad\frac{1}{1+x}=\sum_{k=0}^{+\infty}(-x)^k $$
 +
            <p>So we suppose:</p>
 +
            $$ N_c&lt;1\Longleftrightarrow N_{t=0}&gt;\frac{N_{max}}{2} $$
 +
            <p>From the biological perspective, this indicates the initial population of E.coli has been more than the half
 +
                of maximum population, this assumption roughly fits our experiments. This condition promises following equation:</p>
 +
            $$ \because t&gt;0,e^{-rt}&lt;1 \\\therefore N_c·e^{-rt}&lt;1\\ \therefore \frac{1}{N_c(t)}=\sum_{k=0}^{+\infty}(-N_ce^{-rt})^k
 +
            $$
 +
            <p>So we will have:</p>
 +
            $$ \int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt=\int\sum_{k=0}^{+\infty}(-N_c)^ke^{(\phi_{mRNA}-kr)t}\,dt\\=\sum_{k=0}^{+\infty}\int(-N_c)^ke^{(\phi_{mRNA}-kr)t}\,dt\\
 +
            =\sum_{k=0}^{+\infty}(-N_c)^k(\phi_{mRNA}-kr)^{-1}e^{(\phi_{mRNA}-kr)t} $$
 +
            <p>And:</p>
 +
            $$ \begin{aligned} A(t)&amp;=C_1·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt\\ &amp;=C_1N_c(t)·\sum_{k=0}^{+\infty}(-N_c)^k(\phi_{mRNA}-kr)^{-1}e^{-krt}\\
 +
            &amp;=C_1N_c(t)·\sum_{k=0}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr} \end{aligned} $$
 +
            <p>Therefore:</p>
 +
            $$ [mRNA]=C_1N_c(t)·v_{generate}·\sum_{k=0}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}+C_1C_0N_c(t)·e^{-\phi_{mRNA}t}
 +
            $$
 +
            <p>Before we use this formula to obtain the expression of protein&#39;s concentration, we should analyze and simplify
 +
                it.
 +
            </p>
 +
            <p>Property i :</p>
 +
            $$ \exists k_0,\forall k&gt;k_0,|\phi_{mRNA}-kr|&gt;1\\ \Longleftrightarrow k_0&gt;\frac{1+\phi_{mRNA}}{r} \\\therefore \sum_{k=0}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}=\sum_{k=0}^{k_0}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}+\sum_{k=k_0+1}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}
 +
            $$
 +
            <p>For the first part:</p>
 +
            $$ \begin{aligned} &amp;S_1=\sum_{k=0}^{k_0}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}\\ &amp;=\frac{1}{\phi_{mRNA}}-\frac{N_ce^{-rt}}{\phi_{mRNA}-kr}+\frac{N_c^2e^{-2rt}}{(\phi_{mRNA}-kr)^2}-·····+(\frac{-N_ce^{-rt}}{\phi_{mRNA}-kr})^{k_0}\\
 +
            \end{aligned}\\ \lim_{t\to\infty}S_1=\frac{1}{\phi_{mRNA}} $$
 +
            <p>For the second part:</p>
 +
            $$ |S_2|=\sum_{k=k_0+1}^{+\infty}|\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}|&lt;\sum_{k=k_0}^{+\infty}(N_c·e^{-rt})^k=\frac{(N_ce^{-rt})^{k_0+1}}{1-N_ce^{-rt}}
 +
            \\\ 0\le\lim_{t\to\infty}S_2\le\lim_{t\to\infty}|S_2|\le\lim_{t\to\infty}\frac{(N_ce^{-rt})^{k_0+1}}{1-N_ce^{-rt}}=0\\
 +
            \therefore \lim_{t\to\infty}S_2=0 $$
 +
            <p>Therefore:</p>
 +
            $$ \lim_{t\to\infty}A(t)=\lim_{t\to\infty}C_1·v_{generate}·(1+N_ce^{-rt})(S_1+S_2)\\ =\lim_{t\to\infty}C_1·v_{genrate}·(S_1+S_2+N_ce^{-rt}S_1+N_ce^{-rt}S_2)\\
 +
            =\frac{C_1}{\phi_{mRNA}}·v_{generate}+0+0+0\\ =\frac{C_1}{\phi_{mRNA}}·v_{generate} $$
 +
            <p>Property ii :</p>
 +
            $$ A(t)\approx \frac{C_1·v_{generate}}{\phi_{mRNA}}+{C_1·v_{generate}}(\frac{N_c}{\phi_{mRNA}}-\frac{N_c}{\phi_{mRNA}-r})·e^{-rt}\\+{C_1·v_{generate}}(\frac{N_c^2}{(\phi_{mRNA}-2r)^2}-\frac{N_c^2}{\phi_{mRNA}-r})·e^{-2rt}+o((rt)^3)
 +
            $$
 +
            <p>So we finally get:</p>
 +
            $$ [mRNA]= \frac{C_1·v_{generate}}{\phi_{mRNA}}+G·e^{-rt}+H·e^{-2rt}+C(t)·e^{-\phi_{mRNA} t} $$
 +
            <p>Now we use this formula to solve following ODE:</p>
 +
            $$ [protein]=e^{-\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}·(\int g_{protein}[mRNA]·e^{\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}\,dt+C_0&#39;)
 +
            $$
 +
            <p>From previous calculate we could guess the approximate solution to protein&#39;s concentration will be following
 +
                form:</p>
 +
            $$ [protein]=A&#39;(t)+B&#39;(t)e^{-rt}+C&#39;(t)e^{-\phi t}+D&#39;(t)e^{-2rt}+E&#39;(t)e^{-(r+\phi)t}+F&#39;(t)e^{-\phi&#39;t}\\
 +
            \phi = \phi_{mRNA}\\ \phi&#39;= \phi_{protein} $$
 +
            <p>Or we can appromixately consider this formula as:</p>
 +
            $$ [protein]=S(t)+T(t)·e^{-\kappa t}\\ $$
 +
            <p>$\kappa$ is a parameter used to reflect the fact comprehensively. </p>
 +
            <p>Finally we get:</p>
 +
            $$ \lim_{t\to\infty}[protein]=S=\frac{C_1C_2 g_{protein}}{\phi_{protein}\phi_{mRNA}}v_{generate}\\ \Longrightarrow S\varpropto
 +
            v_{generate} $$
 +
            <p>This result indicates the generated protein concentration has a direct relation with input signal molecule concentration.
 +
                More importantly, we use Hill equation to describe the final product concentration induced by different concentration
 +
                of input signal molecule is approperiate.</p>
 +
            <p>In our case, after renewing with fresh LB solution, the protein will degradate and never generate new. So another
 +
                dofferential equation is needed to describe this situation:</p>
 +
            $$ \frac{d[protein]}{dt}=-\phi_{protein}[protein] $$
 +
            <p>The initial value of this equation is:</p>
 +
            $$ [protein]|_{T=t_0}=S $$
 +
            <p>Then the function will be:</p>
 +
            $$ [protein]=S·e^{-\phi_{protein} t} $$
 +
            <h5>Diffusion of signal molecule at initial time</h5>
 +
            <h6>Review</h6>
 +
            <p>We suppose the initial concentration difference between inside of E.coli and outside is $\Delta c(0)$, also we
 +
                know the time for E.coli to balence this difference:</p>
 +
            $$ c(t)= C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}} $$
 +
            <p>So the generating efficency comes to:</p>
 +
            $$ v_{generate} = \frac{V_{\max}}{1+(\frac{k}{ C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}}})^n} $$
 +
            <p>And we will use this formula to give the initial state.</p>
 +
            <h6>How to solve?</h6>
 +
            <p>First we have following relations in mathematics:</p>
 +
            $$ \lim_{x\to0}\frac{(1+x)^n}{1+nx}=1\\ \lim_{x \to 0}\frac{1+x^n}{1-x^{2n}} = \lim_{x \to 0}\frac{1}{1-x^{n}}=1 $$
 +
            <p>These two equation indicate a group of equivalent infinitesimal, which we can use to do approximation in our
 +
                problem. The approximation can be done as following way by using two properties:</p>
 +
            $$ v_{generate} = \frac{V_{\max}}{1+(\frac{k}{ c(t)})^n}\\ =V_{\max}-\frac{V_{\max}}{1+(\frac{c(t)}{k})^n}\\ =V_{\max}-V_{\max}[1-\frac{c(t)}{k})^n]\\
 +
            =V_{\max}(\frac{c(t)}{k})^n\\ =V_{\max}(\frac{C_{saturated}}{k})^n(1-\frac{\Delta c}{k}e^{-\frac{t}{\tau}})^n\\
 +
            =V_{\max}(\frac{C_{saturated}}{k})^n(1-n\frac{\Delta c}{k}e^{-\frac{t}{\tau}}) $$
 +
            <p>For simplicity, we can rewrite into a simple equation:</p>
 +
            $$ v&#39;_{generate} = V&#39;_{\max}-\delta e^{-\frac{t}{\tau}} $$
 +
            <p>And the ODE for mRNA can be written into:</p>
 +
            $$ \frac{d([mRNA])}{dt}=V&#39;_{\max}-\delta e^{-\frac{t}{\tau}}-\phi_{mRNA}[mRNA] $$
 +
            <p>Solution:</p>
 +
            $$ [mRNA]=\frac{V_{\max}}{\phi_{mRNA}}-\frac{\tau \delta}{\tau\phi_{mRNA}-1}e^{-\frac{t}{\tau}}+(-\frac{V_{\max}}{\phi_{mRNA}}+\frac{\tau
 +
            \delta}{\tau\phi_{mRNA}-1})e^{-\phi t} $$
 +
            <p>Correspondingly, the function of protein is:</p>
 +
            $$ [protein]=\frac{V_{\max}}{\phi_{mRNA}\phi_{protein}}-\frac{\tau^2 \delta}{(\tau\phi_{protein}-1)(\tau\phi_{mRNA}-1)}e^{-\frac{t}{\tau}}\\+\frac{1}{\phi_{protein}-\phi_{mRNA}}(-\frac{V_{\max}}{\phi_{mRNA}}+\frac{\tau
 +
            \delta}{\tau\phi_{mRNA}-1})e^{-\phi t}+C&#39;e^{-\phi_{protein}t}\\ C&#39;=-\frac{V_{\max}}{\phi_{mRNA}\phi_{protein}}+\frac{\tau^2
 +
            \delta}{(\tau\phi_{protein}-1)(\tau\phi_{mRNA}-1)}\\-\frac{1}{\phi_{protein}-\phi_{mRNA}}(-\frac{V_{\max}}{\phi_{mRNA}}+\frac{\tau
 +
            \delta}{\tau\phi_{mRNA}-1}) $$
 +
            <p>The simulation curve for an arbitraty number:</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/0/05/T--Shanghaitech--simulation.png' alt='simulation' /></p>
 +
            <p>We can see the initial slope of the curve is rasing to a point and then decrease gradually which is highly fixed
 +
                to the experiment result we get.</p>
 +
            <h5>Decay of signal molecule</h5>
 +
            <h6>Review</h6>
 +
            <p>In basic model, we consider the decay of signal can be neglected because we found there&#39;s no significant
 +
                difference between concentration in vitro. But actually when we meature the rough concentration in the LB
 +
                with E.coli, we found that the concentration has a linear deacrease through time, which we should take consideration
 +
                into our model. </p>
 +
            <p>The decay can be shown as following equation:</p>
 +
            $$ [S]_t=[S]_{initial}-k_{decay}t $$
 +
            <p>And the $v_{generate}$ becomes to:</p>
 +
            $$ v_{generate}= V_{\max}\frac{([S]_t)^n}{k^n+([S]_t)^n}\\ \frac{d}{dt}v_{generate}=-\frac{ V_{\max}·k_{decay}}{k}\frac{n([S]_t)^{n-1}}{(k^n+([S]_t)^n)^2}
 +
            $$
 +
            <p>According to the solution we deduced before, we have:</p>
 +
            $$ [protein]=\frac{\phi_2}{\phi_2-\phi_1}e^{-\phi_{mRNA}t}(\int v_{generate}·e^{\phi_{mRNA}t}dt+C)+\frac{\phi_2}{\phi_1(\phi_2-\phi_1)}·\frac{d}{dt}v_{generate}+A^*·e^{-\phi_2
 +
            t} $$
 +
            <p>Surely the first step is to confirm this equation gives a reasonable result. Through using following mathematics
 +
                conclution, we can approximately consider the integral as a summation:</p>
 +
            $$ \int f(t) dt=F(t)+C=\int_a^tf(\mu)d\mu+F(a)+C $$
 +
            <p>We assume $a=0$ which has no effect to the formula but has its biological meaning, which is the starting timepoint.
 +
                So we have:</p>
 +
            $$ \int v_{generate}·e^{\phi_{mRNA}t}dt=\int_0^t v_{generate}(\mu)·e^{\phi_{mRNA}\mu}d\mu\\ \approx\sum_{i=0}^{n}V_{\max}\frac{([S]_{initial}-k_{decay}i\Delta
 +
            t)^n}{k^n+([S]_{initial}-k_{decay}i\Delta t)^n}·e^{\phi_{mRNA}i\Delta t}·\Delta t $$
 +
            <p>Which</p>
 +
            $$ n\Delta t=t $$
 +
            <p>We use matlab to obtain a rough curve. X-axis refers to time. </p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/c/c8/T--Shanghaitech--decay.png' alt='decay' /></p>
 +
            <p>This is a important result because it indicates that the production will not always increase with the time going.
 +
                Actually, there exists a so-called &quot;best time&quot; to process next step in our system. For example,
 +
                this peak can determine when we dilute input signal to get output signal as much as possible. </p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/e/e3/T--Shanghaitech--%E5%90%88%E6%88%90%E9%85%B6.png' alt='合成酶' /></p>
 +
            <p>Red stars refers to &quot;best time&quot; according to different input concentration from upstream block.</p>
 +
            <p>*matlab code:</p>
 +
            <pre class="md-fences md-end-block" lang="matlab"> <div class="CodeMirror cm-s-inner CodeMirror-wrap"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 4px;"></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 0px; margin-bottom: 0px; border-right-width: 30px; min-height: 314px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: 0px; width: 0px;"></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">n</span> = [];</span></pre></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">fn</span> = [];</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">for</span> <span class="cm-variable">i</span>=<span class="cm-number">1</span>:<span class="cm-variable">T</span><span class="cm-operator">/</span><span class="cm-variable">dt</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">n</span> = [<span class="cm-variable">n</span> <span class="cm-variable">i</span>];</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">t</span> = <span class="cm-builtin">exp</span>(<span class="cm-operator">-</span><span class="cm-variable">a</span><span class="cm-operator">*</span><span class="cm-variable">i</span><span class="cm-operator">*</span><span class="cm-variable">dt</span>);</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">sum</span>=<span class="cm-number">0</span>;</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">for</span> <span class="cm-variable">j</span>=<span class="cm-number">0</span>:<span class="cm-variable">i</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">sum</span> = <span class="cm-builtin">sum</span> <span class="cm-operator">+</span> (<span class="cm-variable">Vm</span><span class="cm-operator">-</span>(<span class="cm-variable">j</span><span class="cm-operator">*</span><span class="cm-variable">dt</span>)<span class="cm-operator">^</span><span class="cm-variable">n</span>)<span class="cm-operator">*</span><span class="cm-builtin">exp</span>(<span class="cm-variable">a</span><span class="cm-operator">*</span><span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">j</span>)<span class="cm-operator">*</span><span class="cm-variable">dt</span><span class="cm-operator">/</span>(<span class="cm-variable">k</span><span class="cm-operator">^</span><span class="cm-variable">n</span><span class="cm-operator">+</span>(<span class="cm-variable">Vm</span><span class="cm-operator">-</span>(<span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">j</span>)<span class="cm-operator">^</span><span class="cm-variable">n</span>));</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">end</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">y</span> = <span class="cm-variable">t</span><span class="cm-operator">*</span><span class="cm-builtin">sum</span><span class="cm-operator">+\</span><span class="cm-variable">phi</span><span class="cm-operator">*</span> (<span class="cm-variable">Vm</span> <span class="cm-operator">-</span> <span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">i</span>)<span class="cm-operator">^</span>(<span class="cm-variable">n</span><span class="cm-number">-1</span>)<span class="cm-operator">/</span>(<span class="cm-variable">k</span><span class="cm-operator">^</span><span class="cm-variable">n</span> <span class="cm-operator">+</span> (<span class="cm-variable">Vm</span> <span class="cm-operator">-</span> <span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">i</span>)<span class="cm-operator">^</span><span class="cm-variable">n</span>)<span class="cm-operator">^</span><span class="cm-number">2</span>;</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">fn</span> = [<span class="cm-variable">fn</span> <span class="cm-variable">y</span>];</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">end</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">plot</span>(<span class="cm-variable">n</span>,<span class="cm-variable">fn</span>);</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">max</span>(<span class="cm-variable">fn</span>);</span></pre></div></div></div></div></div><div style="position: absolute; height: 30px; width: 1px; border-bottom: 0px solid transparent; top: 314px;"></div><div class="CodeMirror-gutters" style="display: none; height: 344px;"></div></div></div></pre>
 +
            <p>This matlab code shows how we draw the curves and how to find maximum.</p>
 +
            <h4>Signal Producing</h4>
 +
            <h6>Review</h6>
 +
            <p>In last part, we gives a approximate value of the protein we will get from our system:</p>
 +
            $$ \lim_{t\to\infty}[protein]=S=\frac{C_1C_2 g_{protein}}{\phi_{protein}\phi_{mRNA}}v_{generate} $$
 +
            <p>If we consider the decay of molecule, then we rewrite equation above as:</p>
 +
            $$ [protein]_{\max}=S|_{t=t_{\max}}(1+\eta(\frac{v&#39;_{generate}}{v_{generate}}+\frac{{v&#39;&#39;_{generate}}}{v_{generate}})|_{t=t_{\max}})\\=\frac{C_1C_2
 +
            g_{protein}}{\phi_{protein}\phi_{mRNA}}v_{generate}|_{t=t_{\max}}(1+\eta(\frac{dv_{generate}}{dt}+\frac{{d^2v_{generate}}}{dt^2})|_{t=t_{\max}})
 +
            $$
 +
            <p>Which:</p>
 +
            $$ (\frac{dv_{generate}}{dt}+\frac{{d^2v_{generate}}}{dt^2})|_{t=t_{\max}}&lt;0 $$
 +
            <p>For simpilicity, we define the final production of goal protein as</p>
 +
            $$ [protein]=S\propto v_{generate}|_{t=t_{max}} $$
 +
            <h6>Analyse</h6>
 +
            <p>Now we focus on the differential equation related to the signal production:</p>
 +
            $$ \frac{d[EAB]}{dt}=k_1[E][A][B]-(k_1+k_{-1})[EAB]\\ \frac{d[M_{signal}]}{dt}=k_2[EAB] $$
 +
            <p>In this equation set, $[E]$ equals to the concentration of protein. </p>
 +
            $$ [E]=[protein] $$
 +
            <p>Finally we have:</p>
 +
            $$ [EAB]=\frac{k_1[A][B]S}{-\phi_{protein}+k_{-1}+k_{1}}·e^{-\phi_{protein}t}+C_2·e^{-(k_{-1}+k_{1})t} $$
 +
            <p>And the initial state:</p>
 +
            $$ [EAB]|_{t=0}=0\\ \Longrightarrow C_2=\frac{k_1[A][B]S}{\phi_{protein}-k_{-1}-k_1} $$
 +
            <p>Therefore:</p>
 +
            $$ [EAB]=\frac{k_1[A][B]S}{-\phi_{protein}+k_{-1}+k_{1}}·(e^{-\phi_{protein}t}-e^{-(k_{-1}+k_{1})t})\\ \lambda_1=\phi_{protein}\\
 +
            \lambda_2=k_1+k_{-1}\\ \Longrightarrow [EAB]=C_2(e^{-\lambda_1t}-e^{-\lambda_2t}) $$
 +
            <p>Finally we get:</p>
 +
            $$ [M_{signal}]=k_2C_2(-\frac{e^{-\lambda_1t}}{\lambda_{1}}+\frac{e^{-\lambda_2t}}{\lambda_{2}})+C_3\\ \lim_{t\to\infty}[M_{signal}]=\frac{k_1k_2[A][B]}{\lambda_1\lambda_2}S
 +
            $$
 +
            <h4>NOR Gate</h4>
 +
            <p>This result can easily transit to NOR gate, because from mathematical perspective, the different places are initial
 +
                values and another form of Hill equation. To describe the mechanism of NOR gate, we supposed that the whole
 +
                system remains at steady state. (In other word, all concentrations remain as constants.) </p>
 +
            $$ v_{inhibition}=V_{\max}-v_{generate}\\ \frac{d([mRNA])}{dt}=v_{inhibition}-\phi_{mRNA}[mRNA]=V_{\max}-v_{generate}-\phi_{mRNA}[mRNA]\\
 +
            \frac{d([protein])}{dt}=g_{protein}[mRNA]-\phi_{protein}[protein]\\ $$
 +
            <p>We get:</p>
 +
            $$ [mRNA]=\frac{v_{inhibition}}{\phi_{mRNA}}+C·e^{-\phi_{mRNA} t}\\ \Longrightarrow[mRNA]=A+B·e^{-\phi_{mRNA}t}\\ \lim_{t\to\infty}[mRNA]=\frac{v_{inhibition}}{\phi_{mRNA}}
 +
            $$ $$ [protein]=g_{protein}\phi_{protein}^{-1}A+g_{protein}B(\phi_{protein}-\phi_{mRNA})^{-1}e^{-\phi_{mRNA}
 +
            t}+C&#39;e^{-\phi_{protein} t}\\ \Longrightarrow [protein]=A&#39;+B&#39;e^{-\phi_{mRNA} t}+C&#39;e^{-\phi_{protein}
 +
            t} $$
 +
            <p>Furthermore we get:</p>
 +
            $$ [M_{signal}]=A&#39;·(k_1+k_2)^{-1}+B&#39;·(-\phi_{mRNA}+k_1+k_2)^{-1}·e^{-\phi_{mRNA}t}\\+C&#39;·(-\phi_{protein}+k_1+k_2)^{-1}·e^{-\phi_{protein}t}+D·e^{-(k_1+k_2)t}
 +
            $$
 +
            <p>With the relation:</p>
 +
            $$ D=[M_{signal}]|_{t=0}-\{A&#39;·(k_1+k_2)^{-1}+B&#39;·(-\phi_{mRNA}+k_1+k_2)^{-1}\\+C&#39;·(-\phi_{protein}+k_1+k_2)^{-1}\}
 +
            $$
 +
            <p>Also we have:</p>
 +
            $$ \lim_{t\to\infty}[M_{signal}]=\frac{A&#39;}{(k_1+k_2)}\\=\frac{g_{protein}}{(k_1+k_2)\phi_{protein}\phi_{mRNA}}·v_{inhibition}
 +
            $$
 +
            <h4>Extra model</h4>
 +
            <h6>Review</h6>
 +
            <p>Model of E.coli population:</p>
 +
            <p>$N_{E.coli}$ is satisfied to following equation:</p>
 +
            $$ \frac{dN_{E.coli}}{dt}=rN_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}})\\ N_{E.coli}=\frac{N_{\max}}{1+(\frac{N_{\max}}{N_{t=0}}-1)·e^{-rt}}
 +
            $$
 +
            <p>$r$ refers to growth rate of E.coli and $N_{\max}$ refers to the limits of E.coli population. Since $N_{\max}$
 +
                and $N_{t=0}$are constants, so we define following parameter:</p>
 +
            $$ \frac{N_{\max}}{N_{t=0}}-1=N_{c} $$
 +
            <p>Two hypothesis:</p>
 +
            <ol start=''>
 +
                <li>The signal molecule is toxic to E.coli, so the population will decrease related to the increase of concentration
 +
                    linearly.
 +
                </li>
 +
                <li>The signal molecule induce the synthesis of GFP which occupy the substance that is originally used for growth.
 +
                    It indicates that if the GFP is produced, then the population will be at low level, otherwise the population
 +
                    will be at normal level.</li>
  
<style type='text/css'>html
+
            </ol>
{overflow-x: initial !important;}.CodeMirror { height: auto; }
+
            <h6>Analyse</h6>
 +
            <p>To show the difference between these two hypothesis, we give following equation:</p>
 +
            <p>Hypothesis 1:</p>
 +
            $$ \frac{dN_{E.coli}}{dt}=rN_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}})-\gamma N_{E.coli} $$
 +
            <p>$\gamma$ refers to the death rate caused by toxic substance,$[S]$ refers to the concentration of signal molecule
 +
                and $[S]_{critical}$ refers to the critical point which means all E.coli are dead:</p>
 +
            $$ \gamma =r·(1-\frac{[S]}{[S]_{critical}}) $$
 +
            <p>Therefore:</p>
 +
            $$ \lim_{t\to+\infty}N_{E.coli}=N_{\max}·(1-\frac{[S]}{[S]_{critical}}) $$
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/3/31/T--Shanghaitech--toxic2.jpg' alt='toxic' /></p>
 +
            <p>X-axis refers to the time and Y-axis refers to the growth curves. Different curves refer to different concentrations.</p>
 +
            <p>Hypothesis 2:</p>
 +
            $$ \frac{dN_{E.coli}}{dt}=r·N_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}·\beta}) $$
 +
            <p>$\beta$ refers to the ratio of limiting the growth of E.coli, which fits to following equation:</p>
 +
            $$ \beta =1-\beta_{\lim}·\frac{[S]^n}{k^n+[S]^n} $$
 +
            <p>The reason we use the efficiency of mRNA generation is because this ratio determines how many GFP will be finally
 +
                produced. For example, if the ratio is high, the production of GFP will be at high level, which also means
 +
                the most of substance are used to produce GFP instead of growth of E.coli. </p>
 +
            <p>Therefore:</p>
 +
            $$ N_{E.coli}=\frac{N_{\max}·\beta}{1+(\frac{N_{\max}}{N_{t=0}}-1)·e^{-r t}} $$
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/d/d7/T--Shanghaitech--%E8%B4%A8%E6%96%99.png' alt='质料' /></p>
 +
            <p>X-axis refers to the time and Y-axis refers to the growth curves. Different curves refer to different concentrations.
 +
                Low concentration refers to high population and high concentration refers to low population.</p>
 +
            <p>From our data, we found the result showed that hypothesis two was more realistic.</p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/a/ab/T--Shanghaitech--growthdata.png' alt='experiment data' /></p>
 +
            <p>The experiment shows an obvious difference between low concentration and high concentration which fitts to the
 +
                hypothesis two. </p>
 +
            <p>But we also cannot eliminate the hypthesis one, because the curves of low concentration go to steady state but
 +
                the high concentration go slightly down. If we use hypothesis two to explain this phenomemon, that is: The
 +
                production of GFP highly occupy the resource and leave little resource for the growth of E.coli even cannot
 +
                mantain the population at the steady state. If we use hypothesis one, then the result is obvious that signal
 +
                molecule is toxic to E.coli which causes unavoidable death of E.coli. So further study is required.</p>
 +
            <h2>Modeling Our Project</h2>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/e/e5/T--Shanghaitech--modeling_cmz_1.png' alt='5 (2)' /width="400" height="600"></p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/d/d2/T--Shanghaitech--modeling_cmz_2.png'
 +
                    alt='5 (1)' /width="400" height="600"></p>
 +
            <p style="text-align:center"><img src='https://static.igem.org/mediawiki/2017/9/9b/T--Shanghaitech--modeling_cmz_3.png' alt='6'
 +
                /width="400" height="300"></p>
 +
            $$ \begin{align} \frac{{\mathrm{d}\left( {QS1R} \right)}}{{\mathrm{d}t}}&amp;= {C_{QS1R}} + H\left( {{{\left[ M \right]}_e}}
 +
            \right)\\ \frac{{\mathrm{d}\left( {\left[ {mRN{A_1}} \right]} \right)}}{{\mathrm{d}t}}&amp;= \frac{{\mathrm{d}\left(
 +
            {QS1R} \right)}}{{\mathrm{d}t}} - {\emptyset _1}\left[ {mRNA} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_1}}
 +
            \right]} \right)}}{{\mathrm{d}t}}&amp;= {g_1}\left[ {mRN{A_1}} \right] - {\emptyset _2}\left[ {protei{n_1}} \right]
 +
            - \frac{{\mathrm{d}\left( {\left[ M \right]} \right)}}{{\mathrm{d}t}}\\ {K_1}&amp;= \frac{{\left[ {protei{n_1}}
 +
            \right]\left[ {QS1 - AHL} \right]}}{{\left[ M \right]}}\\ H\left( {\left[ x \right]} \right)&amp;= \frac{{{V_{\max
 +
            }}{{\left[ x \right]}^m}}}{{{{\left[ x \right]}^m} + {K_a}^m}}\\ {\left[ M \right]_e}&amp;= {P_e}\left[ M \right]\\
 +
            {P_{activated}}&amp;= {P_e} + {P_e}&#39;= P\left[ {QS1{R_{translated}}|{M_{combined}}} \right]\\ 1&amp;= {P_{activated}}
 +
            \cdot {P_{combined}} + {P_{cons}} \cdot \overline {{P_{combined}}} + {P_{inactivated}}\\ \frac{{\mathrm{d}\left(
 +
            {CI} \right)}}{{\mathrm{d}t}}&amp;= {C_{CI}} + H\left( {{{\left[ M \right]}_{e&#39;}}} \right)\\ \frac{{\mathrm{d}\left(
 +
            {\left[ {mRN{A_2}} \right]} \right)}}{{\mathrm{d}t}}&amp;= \frac{{\mathrm{d}\left( {CI} \right)}}{{\mathrm{d}t}}
 +
            - {\emptyset _3}\left[ {mRN{A_2}} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_2}} \right]} \right)}}{{\mathrm{d}t}}&amp;=
 +
            {g_2}\left[ {mRN{A_2}} \right] - {\emptyset _4}\left[ {protei{n_2}} \right] - H\left( {{{\left[ {protei{n_2}}
 +
            \right]}_e}} \right)\\ {\left[ {protei{n_2}} \right]_e}&amp;= {P_{activated}}\left[ {protei{n_2}} \right]\\ 1&amp;=
 +
            {P_{activated}} \cdot {P_{combined}} + {P_{cons}} \cdot \overline {{P_{combined}}} + {P_{inactivated}}\\ \frac{{\mathrm{d}\left(
 +
            {QS2I} \right)}}{{\mathrm{d}t}}&amp;= {C_{QS2I}} + H&#39;\left( {{{\left[ {protei{n_2}} \right]}_e}} \right)\\
 +
            \frac{{\mathrm{d}\left( {\left[ {mRN{A_3}} \right]} \right)}}{{\mathrm{d}t}}&amp;= \frac{{\mathrm{d}\left( {QS2I}
 +
            \right)}}{{\mathrm{d}t}} - {\emptyset _5}\left[ {mRN{A_3}} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_3}}
 +
            \right]} \right)}}{{\mathrm{d}t}}&amp;= {g_3}\left[ {mRN{A_3}} \right] - {\emptyset _6}\left[ {protei{n_3}} \right]
 +
            - \frac{{\mathrm{d}\left( {\left[ N \right]} \right)}}{{\mathrm{d}t}}\\ \frac{{\mathrm{d}\left( {CI} \right)}}{{\mathrm{d}t}}&amp;=
 +
            {C_{CI}} + H\left( {{{\left[ M \right]}_{e&#39;}}} \right)\\ \frac{{\mathrm{d}\left( {\left[ {mRN{A_2}} \right]}
 +
            \right)}}{{\mathrm{d}t}}&amp;= \frac{{\mathrm{d}\left( {CI} \right)}}{{\mathrm{d}t}} - {\emptyset _3}\left[ {mRN{A_2}}
 +
            \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_2}} \right]} \right)}}{{\mathrm{d}t}}&amp;= {g_2}\left[ {mRN{A_2}}
 +
            \right] - {\emptyset _4}\left[ {protei{n_2}} \right] - H\left( {{{\left[ {protei{n_2}} \right]}_e}} \right)\\
 +
            {\left[ {protei{n_2}} \right]_e}&amp;= {P_{activated}}\left[ {protei{n_2}} \right]\\ 1&amp;= {P_{activated}}
 +
            \cdot {P_{combined}} + {P_{cons}} \cdot \overline {{P_{combined}}} + {P_{inactivated}}\\ \frac{{\mathrm{d}\left(
 +
            {QS2I} \right)}}{{\mathrm{d}t}}&amp;= {C_{QS2I}} + H&#39;\left( {{{\left[ {protei{n_2}} \right]}_e}} \right)\\
 +
            \frac{{\mathrm{d}\left( {\left[ {mRN{A_3}} \right]} \right)}}{{\mathrm{d}t}}&amp;= \frac{{\mathrm{d}\left( {QS2I}
 +
            \right)}}{{\mathrm{d}t}} - {\emptyset _5}\left[ {mRN{A_3}} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_3}}
 +
            \right]} \right)}}{{\mathrm{d}t}}&amp;= {g_3}\left[ {mRN{A_3}} \right] - {\emptyset _6}\left[ {protei{n_3}} \right]
 +
            - \frac{{\mathrm{d}\left( {\left[ N \right]} \right)}}{{\mathrm{d}t}} \end{align} $$
 +
            <p></p>
 +
        </div>
 +
    </div>
 +
</body>
 +
<style>
 +
.CodeMirror { height: auto; }
 
.CodeMirror-scroll { overflow-y: hidden; overflow-x: auto; }
 
.CodeMirror-scroll { overflow-y: hidden; overflow-x: auto; }
 
.CodeMirror-lines { padding: 4px 0px; }
 
.CodeMirror-lines { padding: 4px 0px; }
Line 92: Line 686:
 
.CodeMirror-gutter-elt { position: absolute; cursor: default; z-index: 4; }
 
.CodeMirror-gutter-elt { position: absolute; cursor: default; z-index: 4; }
 
.CodeMirror-lines { cursor: text; }
 
.CodeMirror-lines { cursor: text; }
.CodeMirror pre { border-radius: 0px; border-width: 0px; background: transparent; font-family: inherit; font-size: inherit; margin: 0px; white-space: pre; word-wrap: normal; color: inherit; z-index: 2; position: relative; overflow: visible; }
+
.CodeMirror pre {padding:4px 4px; border-radius: 0px; border-width: 0px; background: transparent; font-family: inherit; font-size: inherit; margin: 0px; white-space: pre; word-wrap: normal; color: inherit; z-index: 2; position: relative; overflow: visible; }
 
.CodeMirror-wrap pre { word-wrap: break-word; white-space: pre-wrap; word-break: normal; }
 
.CodeMirror-wrap pre { word-wrap: break-word; white-space: pre-wrap; word-break: normal; }
 
.CodeMirror-code pre { border-right: 30px solid transparent; width: fit-content; }
 
.CodeMirror-code pre { border-right: 30px solid transparent; width: fit-content; }
Line 122: Line 716:
 
.CodeMirror-lint-marker-multiple { background-image: url(""); background-repeat: no-repeat; background-position: right bottom; width: 100%; height: 100%; }
 
.CodeMirror-lint-marker-multiple { background-image: url(""); background-repeat: no-repeat; background-position: right bottom; width: 100%; height: 100%; }
 
</style>
 
</style>
 
+
</html>
</script></div><p>​ To illustrate the change taken by the decompose of signal molecule, we can see following simulation curves:</p><p>​ <img src='C:/Users/Dellll/Desktop/0-1.png' alt='1-10' /></p><p>​ X-axis refers to time. We find the efficiency will not be disturbed greatly at initial time, and will have a rapid decrease when the concentration equals to the half of origin. This property shows that we should control the reaction time otherwise the production will decay without production with the time going by. So the main purpose of this model is to predict when we dilute the input signal solution to obtain the maximum of protein to convert out signal.</p><p>​ We use matlab to obtain a rough curve of protein expression. X-axis refers to time. </p><p><img src='C:/Users/Dellll/Desktop/decay.png' alt='decay' /></p><p>​ This is a important result because it indicates that the production will not always increase with the time going. Actually, there exists a so-called &quot;best time&quot; to process next step in our system. For example, this peak can determine when we dilute input signal to get output signal as much as possible. </p><p><img src='C:/Users/Dellll/Desktop/%E5%90%88%E6%88%90%E9%85%B6.png' alt='合成酶' /></p><p>​ Red stars refers to &quot;best time&quot; according to different input concentration from upstream block.</p><p>*matlab code:</p><pre class="md-fences md-end-block" lang="matlab"> <div class="CodeMirror cm-s-inner CodeMirror-wrap"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 4px;"></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 0px; margin-bottom: 0px; border-right-width: 30px; min-height: 322px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: 0px; width: 0px;"></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">n</span> = [];</span></pre></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">fn</span> = [];</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">for</span> <span class="cm-variable">i</span>=<span class="cm-number">1</span>:<span class="cm-variable">T</span><span class="cm-operator">/</span><span class="cm-variable">dt</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">n</span> = [<span class="cm-variable">n</span> <span class="cm-variable">i</span>];</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">t</span> = <span class="cm-builtin">exp</span>(<span class="cm-operator">-</span><span class="cm-variable">a</span><span class="cm-operator">*</span><span class="cm-variable">i</span><span class="cm-operator">*</span><span class="cm-variable">dt</span>);</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">sum</span>=<span class="cm-number">0</span>;</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">for</span> <span class="cm-variable">j</span>=<span class="cm-number">0</span>:<span class="cm-variable">i</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">sum</span> = <span class="cm-builtin">sum</span> <span class="cm-operator">+</span> (<span class="cm-variable">Vm</span><span class="cm-operator">-</span>(<span class="cm-variable">j</span><span class="cm-operator">*</span><span class="cm-variable">dt</span>)<span class="cm-operator">^</span><span class="cm-variable">n</span>)<span class="cm-operator">*</span><span class="cm-builtin">exp</span>(<span class="cm-variable">a</span><span class="cm-operator">*</span><span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">j</span>)<span class="cm-operator">*</span><span class="cm-variable">dt</span><span class="cm-operator">/</span>(<span class="cm-variable">k</span><span class="cm-operator">^</span><span class="cm-variable">n</span><span class="cm-operator">+</span>(<span class="cm-variable">Vm</span><span class="cm-operator">-</span>(<span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">j</span>)<span class="cm-operator">^</span><span class="cm-variable">n</span>));</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">end</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">y</span> = <span class="cm-variable">t</span><span class="cm-operator">*</span><span class="cm-builtin">sum</span><span class="cm-operator">+\</span><span class="cm-variable">phi</span><span class="cm-operator">*</span> (<span class="cm-variable">Vm</span> <span class="cm-operator">-</span> <span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">i</span>)<span class="cm-operator">^</span>(<span class="cm-variable">n</span><span class="cm-number">-1</span>)<span class="cm-operator">/</span>(<span class="cm-variable">k</span><span class="cm-operator">^</span><span class="cm-variable">n</span> <span class="cm-operator">+</span> (<span class="cm-variable">Vm</span> <span class="cm-operator">-</span> <span class="cm-variable">dt</span><span class="cm-operator">*</span><span class="cm-variable">i</span>)<span class="cm-operator">^</span><span class="cm-variable">n</span>)<span class="cm-operator">^</span><span class="cm-number">2</span>;</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">fn</span> = [<span class="cm-variable">fn</span> <span class="cm-variable">y</span>];</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">end</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">plot</span>(<span class="cm-variable">n</span>,<span class="cm-variable">fn</span>);</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">max</span>(<span class="cm-variable">fn</span>);</span></pre></div></div></div></div></div><div style="position: absolute; height: 30px; width: 1px; border-bottom: 0px solid transparent; top: 322px;"></div><div class="CodeMirror-gutters" style="display: none; height: 352px;"></div></div></div></pre><p>​ This matlab code shows how we draw the curves and how to find maximum.</p><h2><a name='header-n115' class='md-header-anchor '></a>Model of parameter fitting and simulation</h2><h3><a name='header-n116' class='md-header-anchor '></a>Hill equation</h3><p>​ To get the parameter of Hill equation through our data, we tranfer Hill equation to following form:</p><div contenteditable="false" class="mathjax-block md-end-block" id="mathjax-n118" cid="n118" mdtype="math_block"><span class="MathJax_Preview"></span><span class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-15-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="37.978ex" height="5.262ex" viewBox="0 -1409.3 16351.7 2265.7" role="img" focusable="false" style="vertical-align: -1.989ex;"><defs><path stroke-width="1" id="E16-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="1" id="E16-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="1" id="E16-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="1" id="E16-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="1" id="E16-MJMATHI-71" d="M33 157Q33 258 109 349T280 441Q340 441 372 389Q373 390 377 395T388 406T404 418Q438 442 450 442Q454 442 457 439T460 434Q460 425 391 149Q320 -135 320 -139Q320 -147 365 -148H390Q396 -156 396 -157T393 -175Q389 -188 383 -194H370Q339 -192 262 -192Q234 -192 211 -192T174 -192T157 -193Q143 -193 143 -185Q143 -182 145 -170Q149 -154 152 -151T172 -148Q220 -148 230 -141Q238 -136 258 -53T279 32Q279 33 272 29Q224 -10 172 -10Q117 -10 75 30T33 157ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="1" id="E16-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="1" id="E16-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="1" id="E16-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="1" id="E16-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="1" id="E16-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="1" id="E16-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="1" id="E16-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="1" id="E16-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="1" id="E16-MJMATHI-56" d="M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z"></path><path stroke-width="1" id="E16-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="1" id="E16-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="1" id="E16-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="1" id="E16-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path stroke-width="1" id="E16-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-48" x="0" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-69" x="888" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6C" x="1234" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6C" x="1532" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-65" x="2831" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-71" x="3297" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-75" x="3758" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-61" x="4330" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-74" x="4860" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-69" x="5221" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6F" x="5567" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6E" x="6052" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMAIN-3A" x="6930" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-79" x="7487" y="0"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMAIN-3D" x="8262" y="0"></use><g transform="translate(9318,0)"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-56" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-78" x="1408" y="0"></use></g></g><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMAIN-D7" x="11624" y="0"></use><g transform="translate(12403,0)"><g transform="translate(342,0)"><rect stroke="none" width="3486" height="60" x="0" y="220"></rect><g transform="translate(1194,676)"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6E" x="809" y="513"></use></g><g transform="translate(60,-686)"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6B" x="0" y="0"></use><use transform="scale(0.707)" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6E" x="737" y="408"></use><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMAIN-2B" x="1268" y="0"></use><g transform="translate(2269,0)"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#E16-MJMATHI-6E" x="809" y="408"></use></g></g></g></g></g></svg></span></span><script type="math/tex; mode=display" id="MathJax-Element-15">
+
Hill\quad equation:y=V_{max}\times\frac{x^n}{k^n+x^n}
+

Latest revision as of 02:42, 2 November 2017

Model

Introduction

In this model, we simplify the actual biology process into basic model that only remains input molecule, promotor, transcription gene, mRNA, goal protein and output molecule from both dynamic perspective and responding ability. In developed model, we consider different conditions including the population growth, diffusion of signal and decay of signal molecules in cells. which will have influence on our block. Finally, we completely construct the model of our block, which will instruct our experiment results and using of our system. Moreover, this model does some basic researches on population and new measurement methods.

Aim

  1. Develop the dynamic model of genetic expression, which consider the influence of population of E.coli, diffusion of signal molecule and decay of signal molecules.
  2. Solve the problem on parameter fitting in our experiments results.
  3. Give a measurement method on determing the efficiency of signal converter.
  4. Use both theoritical simulation and experiments results to indicate the main factor affecting the growth of E.coli.

Symbol

Symbol Meaning
$v_{generate}$ The generation efficency of mRNA
$[X]$ The concentration of substance $X$
$g_{X}$ The generation rate of substance $X$
$\phi_{X}$ The decay rate of substance $X$
$V_{\max}$ The maximum rate of generation
$C_{saturated}$ The saturated concentration
$N_{\max}$ The maximum population
$r$ Growth rate of E.coli
$[S]_t$ Function of signal molecule decay
$R(t)$ Function of mRNA generate

Assumption

  1. mRNA and proteins will decay following Poisson distribution (equivalent to birth-and-death process)
  2. All combinations of two proteins are considered as quick reactions (Only control by thermodynamics)
  3. The constitutive promoter has a constant rate to transcript proteins.
  4. All raw materials inside cells can be considered as constants.

Basic Model

$$ \begin{aligned} \frac{d([mRNA])}{dt}&=v_{generate}-\phi_{mRNA}[mRNA]\\ \frac{d([protein])}{dt}&=g_{protein}[mRNA]-\phi_{protein}[protein] \end{aligned} $$

In these equations, $v_{generate}$ refers to the efficiency of mRNA transcription. $\phi$ refers to the degradation rate of mRNA and protein.

The property of $v_{generate}$ depends on the promoter and the concentration of inducer molecule. If the promoter is pcons, $v_{generate}$ is a constant. Otherwise, it will have a sensitive response to different concentration of inducer molecule. This reponse can be expressed as following form:

$$ v_{generate}([x])=V_{max}·(\frac{(1-\epsilon)·x^n}{k^n+x^n}+\epsilon) $$

$k$ refers to the dissociation constant and $x$ refers to the concentration of inducer concentration. $\epsilon$ refers to the leakage of genetic expression.

In comparision, for NOR GATE, the repression of inducer molecule can be expressed as similar form:

$$ v_{generate}([x])=V_{max}·(\frac{1-\epsilon}{1^n+(\frac{x}{k})^n}+\epsilon) $$

For specific concerntration, $v_{generate}$ is a constant, otherwise it is a function of $[x]$

The generated protein is used to produce new signal molecule, which play a role as enzyme. Different from Michaelis-Menten equation, our protein (in other words, enzyme) will degradate while producing new siginal molecule, So this fact should be considered into our fundmental model.

Mathematical expression for producing new signal molecule:

$$ \begin{aligned} \frac{d[EAB]}{dt}&=k_1[E][A][B]-(k_1+k_{-1})[EAB]\\ \frac{d[M_{signal}]}{dt}&=k_2[EAB] \end{aligned} $$

Developed Model

Growth of E.coli

In the developed model, we first take the growth of E.coli into consideration. The growth of E.coli can not only fluctuate the concentration of both reactants and products, but also an important variable in calculate final concentration of products. This model is based on this two fundamental relation:

$$ \begin{aligned} Total&=Concentration·Volumel\\ Volume&=N_{E.coli}·V_{E.coli}\\ \frac{d([protein]·Volume)}{dt}&=g_{protein}[mRNA]·Volume-\phi_{protein}[protein]·Volume \end{aligned} $$

Correspondingly, it is same to equation for mRNA expression:

$$ \frac{d([mRNA])·Volume}{dt}=v_{generate}·Volume-\phi_{mRNA}[mRNA]·Volume\\ $$

$N_{E.coli}$ is a function used to show the population of E.coli, $V_{E.coli}$ refers to the volume of every E.coli, as a constant. So we can divide out the constant $V_{E.coli}$ on both sides of every equations, and take derivative formula:

$$ \frac{d[protein]}{dt}·N_{E.coli}+\frac{dN_{E.coli}}{dt}·[protein]=g_{protein}[mRNA]·N_{E.coli}-\phi_{protein}[protein]·N_{E.coli} $$

Simplify this equation into following form:

$$ \frac{d[protein]}{dt}=g_{protein}[mRNA]-(\phi_{protein}+\frac{N_{E.coli}'}{N_{E.coli}})[protein]\\ N_{E.coli}'=\frac{dN_{E.coli}}{dt} $$

$N_{E.coli}$ is satisfied to following equation:

$$ \begin{aligned} \frac{dN_{E.coli}}{dt}&=rN_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}})\\ N_{E.coli}&=\frac{N_{\max}}{1+(\frac{N_{\max}}{N_{t=0}}-1)·e^{-rt}} \end{aligned} $$

$r$ refers to growth rate of E.coli and $N_{\max}$ refers to the limits of E.coli population. Since $N_{\max}$ and $N_{t=0}$are constants, so we define following parameter:

$$ \frac{N_{\max}}{N_{t=0}}-1=N_{c} $$

And $\frac{N'}{N}$ equals:

$$ \frac{N'}{N}=\frac{N_cre^{-rt}}{1+N_ce^{-rt}} $$

From our experiments, we find there are another two possible factors affecting the production of our system. First one is diffusion of signal molecule at initial time, the other one is the decay of signal molecule with the time flying.

Diffusion of signal molecule at initial time

The concentration of signal is always considered to diffuse into E.coli very rapidly. But from our data, we find that the initial part of our dynamic curve is not fitting to our basic model. Our basic model indicates that the rate of generating will decrease with the time flying, but the experiment shows that the velocity will have a short rise at initial time and then decrease as the way predicted by basic model. Therefore, we take process of diffusion into consideration. Because at very beginning, the concentration of signal in E.coli is very low, and then it will rise by diffusion, so the efficiency of production will rise according to time in a short time period.

We suppose the initial concentration difference between inside of E.coli and outside is $\Delta c(0)$, also we know the time for E.coli to balence this difference:

$$ c(t)= C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}} $$

So the generating efficency comes to:

$$ v_{generate} = \frac{V_{\max}}{1+(\frac{k}{ C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}}})^n} $$

And we will use this formula to simulate initial state.

扩散浓度对时间的响应

The demo is shown above which is a Log linear plot. X-axis refers to the time, Y-axis refers to the generating efficiency. We can easily figure out the concentration will rapidly get to steady state and remains to a constant. Therefore, it will only affect the inital transcription efficiency.

Decay of signal molecule

In basic model, we consider the decay of signal can be neglected because we found there's no significant difference between concentration in vitro. But actually when we meature the approximately concentration in the LB with E.coli, we found that the concentration has a linear deacrease through time, which we should take consideration into our model.

The decay can be shown as following equation:

$$ [S]_t=[S]_{initial}-k_{decay}t $$

And the $v_{generate}$ becomes to:

$$ v_{generate}= V_{\max}\frac{([S]_t)^n}{k^n+([S]_t)^n} $$

To illustrate the change taken by the decompose of signal molecule, we can see following simulation curves:

1-10

X-axis refers to time. We find the efficiency will not be disturbed greatly at initial time, and will have a rapid decrease when the concentration equals to the half of origin. This property shows that we should control the reaction time otherwise the production will decay without production with the time going by. So the main purpose of this model is to predict when we dilute the input signal solution to obtain the maximum of protein to convert out signal.

Extra model

This part will discuss an interesting model on how the signal molecule affect the growth and population. The reason why we care about this question is that we measured the OD600 under different circumstance and found some special relation between the concentration and the population. In breif, with the rise of concentration, the population will decrease. We wonder the mechanism and propse two hypothesis:

  1. The signal molecule is toxic to E.coli, so the population will decrease related to the increase of concentration linearly.

  2. The signal molecule induce the synthesis of GFP which occupy the substance that is originally used for growth. It indicates that if the GFP is produced, then the population will be at low level, otherwise the population will be at normal level.

    In our model, we indicates the second hypothesis is more realistic.

Parameter fitting and simulation

Hill equation

To get the parameter of Hill equation through our data, we tranfer Hill equation to following form:

$$ \begin{aligned} Hill\ equation&:y=V_{max}\times\frac{x^n}{k^n+x^n}\\ New\ form&:\log{\frac{\frac{y}{V_{max}}}{1-\frac{y}{V_{max}}}}=n\log{x}-n\log{k} \end{aligned} $$

In this form, we can get easily get a linear relation between our input concerntration and output GFP. The question is how to find out $V_{max}$ in this equation because this value determine the reprocessed data of output. Another question is, due to the large scale of our data, to ease the workload of proceesing such data. To meet the needs of these two question, first we let each output data substract the minimum among all output data, and define the ratio between each processed output data and the maximum of all output data as the standard output. (NOTICE: The minimum data of this output data set can be the control.)As following shows:

$$ {output}={y_1,y_2,···,y_n} $$ $$ SY_{output}=\{y_1',y_2',···,y_n'\}\quad which\quad y_i=\frac{y_i-\min{Y_{output}}}{\max{Y_{output}}-\min{Y_{output}}} $$

The elements in $SY_{output}$ fit following equation:

$$ \log{\frac{{y_i'}\frac{\max{Youtput}-\min{Y_{output}}}{V_{max}}}{1-{y_i'}\frac{\max{Y_{output}}-\min{Y_{output}}}{V_{max}}}}=n\log{x_i}-n\log{k} $$

We define the value of $\frac{V_{max}}{\max{Youtput}-\min{Y_{output}}}$ as a parameter $PV_{max}$. So the equation we actually simulate is following one:

$$ \log{\frac{y_i'}{PV_{max}-y_i'}}=n\log{x_i}-n\log{k} $$

​ We use Mathematica as fitting tools, the following code is shown:

 

Example and its output is shown (NOTICE: This example is the fitting curve of the Tra with its limited five data. Actually most of our data, except for tra, has six inputs and outputs, so the original code, which is shown above, has six outputs. When we use this code, we can just import outputs into "outputdata" list and run this programm. ):

 

img

Then we can get the meaningful parameter from these data quickly and easily.

Simulation of Signal Producing

The Efficiency of Signal Converter

​ How we can measure the working efficiency of our signal converter is an important question for us. As we all know, the reason why we use GFP to reflect the efficiency of promoter is that we can measure fluoresence easily and establish the quantity relationship between GFP expression and input signal concentration. But when it comes to some other products such as small molecule, they are hard to measure exactly. We use LC-MS to indicate the production of our signal converter roughly, but this data is too rough to instruct our following work. So we will use our model to obtain the parameter of converter indirectly by following experiments and deduction from model.

​ We symbol $S_1,S_2$ as the concentrations of two signal molecules, signal one and signal two, $GFP$ as the result of fluroesence intensity.

​ We propose two experiments. First one is using signal two to induce the expression of GFP. We take its results as standard curve. The other experiment is using signal one to obtain signal two, and we use signal two to induce the expression of gene. Also we will have following data:

$$ \begin{aligned} S_1&=\{c_1,c_2,···,c_n\}\\ GFP&=\{F_1,F_2,···,F_n\} \end{aligned} $$

​ From our model we know the relationship among $S_1,S_2$ and $GFP$ at steady state as following:

$$ \begin{aligned} GFP&=V_{max}·(\frac{(1-\epsilon_1)·{S_2}^n}{k_1^n+{S_2}^n}+\epsilon_1)\\ S_2&=V_{max}·(\frac{(1-\epsilon_2)·{S_1}^m}{k_2^m+{S_1}^m}+\epsilon_2) \end{aligned} $$

​ From the parameter fitting model, we can determine all parameters in $GFP-S_2$ curve. Therefore, we can use this curve and data of GFP from second experiment to obtain the input signal two concentration.

$$ F_i=V_{max}·(\frac{(1-\epsilon_1)·{[S_2]_i}^n}{k_1^n+{[S_2]_i}^n}+\epsilon_1)\\ F'_i=\frac{F_i-\epsilon_1}{1-\epsilon_1} \\\Longleftrightarrow\log{[S_2]_i}=\frac{\log{\frac{F_i'}{V_1-F_i'}}}{n}+\log{k_1} $$

​ So we have the data $[S_2]_i$ related to input concentration of signal one, so we can get the relation through using parameter-fitting model would get the parameter of $S_1-S_2$ curve finally.

Final test  of simulation 2

​ x-axis refers to Log of input signal molecular concentration; y-axis refers to the relative GFP expression.

measure

​ x-axis refers to Log of signal one molecular concentration; y-axis refers to signal two molecular concentration. This curve indicates the effciency of signal converter, which low concentrations of input signal generate less output signal and high concentrations of input signal generate high output signal concentrations of input signal. And there exists a significant drop between low expression and high expression. It is absolutely what we want!

Rough schematic diagram

This is the concentration curve of protein related to time

E

This is the concentration curve of protein complex related to time

EAB

This is the concentration curve of producing signal molecule related to time

Signal

Simulation of NOR GATE

Rough schematic diagram

This is the concentration curve of produced signal molecule related to time

NOR

Theoretical Calculation

Solution to ODE

The core of our model is to solve following equation and find parameters from experiments:

$$ \frac{dy}{dt}+P(t)y=Q(t) $$

The solution can be decomposed to two parts:

$$ \begin{aligned} \frac{dy}{dt}+P(t)y&=0\\ \frac{dy_{s}}{dt}+P(t)y_{s}&=Q(t) \end{aligned} $$

From fisrt equation we will get:

$$ y=Ce^{-\int P(t)\,dt} $$

How can we use the solution to first equation to solve second equation? The answer is to transfer constant $C$ into a function related to $t$. And the derivative will become to following formula:

$$ \begin{aligned} \frac{dy}{dt}&=C(t)·(-P(t))·e^{-\int P(t)\,dt}+C'(t)·e^{-\int P(t)\,dt}\\ \Longrightarrow \frac{dy}{dt}+P(t)y&=C'(t)·e^{-\int P(t)\,dt}\\ \Longrightarrow Q(t)&=C'(t)·e^{-\int P(t)\,dt}\\ \Longrightarrow C(t)&=\int Q(t)·e^{\int P(t)\,dt}\,dt+C \end{aligned} $$

Therefore, the solution to second equation is:

$$ e^{-\int P(t)\,dt}(\int Q(t)·e^{\int P(t)\,dt}\,dt+C) $$

The difficulty is how we can use such a complex function in next differential equation? Actually we probably cannot get the analytic result of the integral, so it seems impossible to get an exact function for protein concentration. Fortunately, there are still some special properties in our function which wll help us to get a relative solution.

We start from the function of mRNA. Since $P(t)$ is a constant in our first equation, we can directly give the result:

$$ [mRNA]= e^{-\phi_{mRNA}t}(\int Q(t)·e^{\phi_{mRNA}t}dt+C) $$

Now we solve following differetial equation:

$$ \frac{d([protein])}{dt}+\phi_{protein}[protein]=g_{protein}[mRNA] $$

Or for simplicity, we use:

$$ \frac{dy}{dt}+\phi_2·y=g·R(t) $$

According to the differential operator method, we get:

$$ \begin{aligned} (D+\phi_2)y^\ &=g·R(t)\\ \Longleftrightarrow y^*&=\frac{1}{D+\phi_2}·g·R(t)\\ \Longleftrightarrow y^*&=\frac{1}{\phi_2}·(1-(\frac{D}{\phi_2})+(\frac{D}{\phi_2})^2-···)·g·R(t)\\ \Longleftrightarrow y^*&=\frac{1}{\phi_2}·(1-\frac{1}{\phi_2}\frac{d}{dt}+\frac{1}{\phi_2^2}\frac{d^2}{dt^2}-···)·g·R(t) \end{aligned} $$

For $R(t)$, we write the general form:

$$ R(t)=e^{-\phi t}(\int Q(t)e^{\phi t}dt+C) $$

When we take derivation:

$$ R'(t)=(-\phi)·e^{-\phi t}(\int Q(t)e^{\phi t}dt)+e^{-\phi t} Q(t)e^{\phi t}+C·(-\phi)·e^{-\phi t}\\ \Longleftrightarrow R'(t)=(-\phi)R(t)+Q(t) $$

Furthermore:

$$ \begin{aligned} R^{(n)}(t)&=(-\phi)R^{(n-1)}(t)+Q^{(n-1)}(t)\\ R^{(n)}(t)&=(-\phi)^n·R(t)+\sum_{k=1}^{n}k^{n-k}Q^{(k)}(t) \end{aligned} $$

REMARK:

$$ f^{(n)}(t)=\frac{d^nf}{dt^n} $$

Therefore we get:

$$ y^*=\frac{g}{\phi_2}·(\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^iR(t)+\sum_{k=1}^{i}(\frac{\phi_1}{\phi_2})^{i}·(\phi_1)^{-k}·Q^{(k)}(t))\\ \Longrightarrow y=\frac{g}{\phi_2}·(\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^iR(t)+\sum_{k=1}^{i}(\frac{\phi_1}{\phi_2})^{i}·(\phi_1)^{-k}·Q^{(k)}(t))+A^*·e^{-\phi_2 t} $$

The first summation is simple:

$$ \sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^iR(t)=\frac{\phi_2}{\phi_2-\phi_1}R(t) $$

Second summation is really complex, so we must do some approximation:

$$ \begin{aligned} &\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^{i}\sum_{k=1}^{i}(\phi_1)^{-k}·Q^{(k)}(t)\\ =&\sum_{i=0}^{+\infty}(\frac{\phi_1}{\phi_2})^{i}(\phi_1)^{-1}·\frac{d}{dt}Q(t)\\ =&\frac{\phi_2}{\phi_1(\phi_2-\phi_1)}·\frac{d}{dt}Q(t) \end{aligned} $$

Therefore we get a approximation of protein's concentration:

$$ [protein]=\frac{\phi_2}{\phi_2-\phi_1}e^{-\phi_{mRNA}t}(\int Q(t)·e^{\phi_{mRNA}t}dt+C)+\frac{\phi_2}{\phi_1(\phi_2-\phi_1)}·\frac{d}{dt}Q(t)+A^*·e^{-\phi_2 t} $$

Solution to Our Model

Details of Developed Model

Growth of E.coli

We combine this solution with our equation, and then we get:

$$ \begin{aligned} \left[mRNA\right]&=e^{-\int(\phi_{mRNA}+\frac{r·N_c}{N_c+e^{rt}})\,dt}·(\int v_{generate}·e^{\int(\phi_{mRNA}+\frac{r·N_c}{N_c+e^{rt}})\,dt}\,dt+C_0)\\ \left[protein\right]&=e^{-\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}·(\int g_{protein}\left[mRNA\right]·e^{\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}\,dt+C_0') \end{aligned} $$

We suppose that:

$$ N_c(t)=1+N_c·e^{-rt} $$

Therefore we get:

$$ [mRNA]=C_1·v_{generate}·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt+C_1·C_0N_c(t)·e^{-\phi_{mRNA}t} $$

As a special case, this is used to decribe if the growth of E.coli is at a steady state:

$$ \lim_{n\to\infty}N_c(t)=1 $$

Then we get a simple formula:

$$ [mRNA]=A·v_{generate}+C·e^{-\phi_{mRNA} t} $$

Further more, we define:

$$ \begin{aligned} A(t)&=C_1·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt\\ C(t)&=C_1·C_0N_c(t)\\ [mRNA]&=A(t)·v_{generate}+C(t)·e^{-\phi_{mRNA} t} \end{aligned} $$

Consider the inital value of mRNA, we get following relation:

$$ A(0)v_{generate}+C(0)=0 $$

Now let's have a look on this special function and related integration:

$$ A(t)=C_1·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt\\ N_c(t)=1+N_c·e^{-rt}\\ N_c=\frac{N_{\max}}{N_{t=0}}-1 $$

We can hardly get an analytic solution to this integration theoritically, but we can do some transformation on $N_c(t)$, which helps us solve this problem partly according to this fact:

$$ If\quad|x|<1\\Then\quad\frac{1}{1+x}=\sum_{k=0}^{+\infty}(-x)^k $$

So we suppose:

$$ N_c<1\Longleftrightarrow N_{t=0}>\frac{N_{max}}{2} $$

From the biological perspective, this indicates the initial population of E.coli has been more than the half of maximum population, this assumption roughly fits our experiments. This condition promises following equation:

$$ \because t>0,e^{-rt}<1 \\\therefore N_c·e^{-rt}<1\\ \therefore \frac{1}{N_c(t)}=\sum_{k=0}^{+\infty}(-N_ce^{-rt})^k $$

So we will have:

$$ \int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt=\int\sum_{k=0}^{+\infty}(-N_c)^ke^{(\phi_{mRNA}-kr)t}\,dt\\=\sum_{k=0}^{+\infty}\int(-N_c)^ke^{(\phi_{mRNA}-kr)t}\,dt\\ =\sum_{k=0}^{+\infty}(-N_c)^k(\phi_{mRNA}-kr)^{-1}e^{(\phi_{mRNA}-kr)t} $$

And:

$$ \begin{aligned} A(t)&=C_1·N_c(t)·e^{-\phi_{mRNA}t}\int\frac{e^{\phi_{mRNA}t}}{N_c(t)}\,dt\\ &=C_1N_c(t)·\sum_{k=0}^{+\infty}(-N_c)^k(\phi_{mRNA}-kr)^{-1}e^{-krt}\\ &=C_1N_c(t)·\sum_{k=0}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr} \end{aligned} $$

Therefore:

$$ [mRNA]=C_1N_c(t)·v_{generate}·\sum_{k=0}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}+C_1C_0N_c(t)·e^{-\phi_{mRNA}t} $$

Before we use this formula to obtain the expression of protein's concentration, we should analyze and simplify it.

Property i :

$$ \exists k_0,\forall k>k_0,|\phi_{mRNA}-kr|>1\\ \Longleftrightarrow k_0>\frac{1+\phi_{mRNA}}{r} \\\therefore \sum_{k=0}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}=\sum_{k=0}^{k_0}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}+\sum_{k=k_0+1}^{+\infty}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr} $$

For the first part:

$$ \begin{aligned} &S_1=\sum_{k=0}^{k_0}\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}\\ &=\frac{1}{\phi_{mRNA}}-\frac{N_ce^{-rt}}{\phi_{mRNA}-kr}+\frac{N_c^2e^{-2rt}}{(\phi_{mRNA}-kr)^2}-·····+(\frac{-N_ce^{-rt}}{\phi_{mRNA}-kr})^{k_0}\\ \end{aligned}\\ \lim_{t\to\infty}S_1=\frac{1}{\phi_{mRNA}} $$

For the second part:

$$ |S_2|=\sum_{k=k_0+1}^{+\infty}|\frac{(-N_c·e^{-rt})^k}{\phi_{mRNA}-kr}|<\sum_{k=k_0}^{+\infty}(N_c·e^{-rt})^k=\frac{(N_ce^{-rt})^{k_0+1}}{1-N_ce^{-rt}} \\\ 0\le\lim_{t\to\infty}S_2\le\lim_{t\to\infty}|S_2|\le\lim_{t\to\infty}\frac{(N_ce^{-rt})^{k_0+1}}{1-N_ce^{-rt}}=0\\ \therefore \lim_{t\to\infty}S_2=0 $$

Therefore:

$$ \lim_{t\to\infty}A(t)=\lim_{t\to\infty}C_1·v_{generate}·(1+N_ce^{-rt})(S_1+S_2)\\ =\lim_{t\to\infty}C_1·v_{genrate}·(S_1+S_2+N_ce^{-rt}S_1+N_ce^{-rt}S_2)\\ =\frac{C_1}{\phi_{mRNA}}·v_{generate}+0+0+0\\ =\frac{C_1}{\phi_{mRNA}}·v_{generate} $$

Property ii :

$$ A(t)\approx \frac{C_1·v_{generate}}{\phi_{mRNA}}+{C_1·v_{generate}}(\frac{N_c}{\phi_{mRNA}}-\frac{N_c}{\phi_{mRNA}-r})·e^{-rt}\\+{C_1·v_{generate}}(\frac{N_c^2}{(\phi_{mRNA}-2r)^2}-\frac{N_c^2}{\phi_{mRNA}-r})·e^{-2rt}+o((rt)^3) $$

So we finally get:

$$ [mRNA]= \frac{C_1·v_{generate}}{\phi_{mRNA}}+G·e^{-rt}+H·e^{-2rt}+C(t)·e^{-\phi_{mRNA} t} $$

Now we use this formula to solve following ODE:

$$ [protein]=e^{-\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}·(\int g_{protein}[mRNA]·e^{\int(\phi_{protein}+\frac{r·N_c}{N_c+e^{rt}})\,dt}\,dt+C_0') $$

From previous calculate we could guess the approximate solution to protein's concentration will be following form:

$$ [protein]=A'(t)+B'(t)e^{-rt}+C'(t)e^{-\phi t}+D'(t)e^{-2rt}+E'(t)e^{-(r+\phi)t}+F'(t)e^{-\phi't}\\ \phi = \phi_{mRNA}\\ \phi'= \phi_{protein} $$

Or we can appromixately consider this formula as:

$$ [protein]=S(t)+T(t)·e^{-\kappa t}\\ $$

$\kappa$ is a parameter used to reflect the fact comprehensively.

Finally we get:

$$ \lim_{t\to\infty}[protein]=S=\frac{C_1C_2 g_{protein}}{\phi_{protein}\phi_{mRNA}}v_{generate}\\ \Longrightarrow S\varpropto v_{generate} $$

This result indicates the generated protein concentration has a direct relation with input signal molecule concentration. More importantly, we use Hill equation to describe the final product concentration induced by different concentration of input signal molecule is approperiate.

In our case, after renewing with fresh LB solution, the protein will degradate and never generate new. So another dofferential equation is needed to describe this situation:

$$ \frac{d[protein]}{dt}=-\phi_{protein}[protein] $$

The initial value of this equation is:

$$ [protein]|_{T=t_0}=S $$

Then the function will be:

$$ [protein]=S·e^{-\phi_{protein} t} $$
Diffusion of signal molecule at initial time
Review

We suppose the initial concentration difference between inside of E.coli and outside is $\Delta c(0)$, also we know the time for E.coli to balence this difference:

$$ c(t)= C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}} $$

So the generating efficency comes to:

$$ v_{generate} = \frac{V_{\max}}{1+(\frac{k}{ C_{saturated} -\Delta c(0)·e^{-\frac{t}{\tau}}})^n} $$

And we will use this formula to give the initial state.

How to solve?

First we have following relations in mathematics:

$$ \lim_{x\to0}\frac{(1+x)^n}{1+nx}=1\\ \lim_{x \to 0}\frac{1+x^n}{1-x^{2n}} = \lim_{x \to 0}\frac{1}{1-x^{n}}=1 $$

These two equation indicate a group of equivalent infinitesimal, which we can use to do approximation in our problem. The approximation can be done as following way by using two properties:

$$ v_{generate} = \frac{V_{\max}}{1+(\frac{k}{ c(t)})^n}\\ =V_{\max}-\frac{V_{\max}}{1+(\frac{c(t)}{k})^n}\\ =V_{\max}-V_{\max}[1-\frac{c(t)}{k})^n]\\ =V_{\max}(\frac{c(t)}{k})^n\\ =V_{\max}(\frac{C_{saturated}}{k})^n(1-\frac{\Delta c}{k}e^{-\frac{t}{\tau}})^n\\ =V_{\max}(\frac{C_{saturated}}{k})^n(1-n\frac{\Delta c}{k}e^{-\frac{t}{\tau}}) $$

For simplicity, we can rewrite into a simple equation:

$$ v'_{generate} = V'_{\max}-\delta e^{-\frac{t}{\tau}} $$

And the ODE for mRNA can be written into:

$$ \frac{d([mRNA])}{dt}=V'_{\max}-\delta e^{-\frac{t}{\tau}}-\phi_{mRNA}[mRNA] $$

Solution:

$$ [mRNA]=\frac{V_{\max}}{\phi_{mRNA}}-\frac{\tau \delta}{\tau\phi_{mRNA}-1}e^{-\frac{t}{\tau}}+(-\frac{V_{\max}}{\phi_{mRNA}}+\frac{\tau \delta}{\tau\phi_{mRNA}-1})e^{-\phi t} $$

Correspondingly, the function of protein is:

$$ [protein]=\frac{V_{\max}}{\phi_{mRNA}\phi_{protein}}-\frac{\tau^2 \delta}{(\tau\phi_{protein}-1)(\tau\phi_{mRNA}-1)}e^{-\frac{t}{\tau}}\\+\frac{1}{\phi_{protein}-\phi_{mRNA}}(-\frac{V_{\max}}{\phi_{mRNA}}+\frac{\tau \delta}{\tau\phi_{mRNA}-1})e^{-\phi t}+C'e^{-\phi_{protein}t}\\ C'=-\frac{V_{\max}}{\phi_{mRNA}\phi_{protein}}+\frac{\tau^2 \delta}{(\tau\phi_{protein}-1)(\tau\phi_{mRNA}-1)}\\-\frac{1}{\phi_{protein}-\phi_{mRNA}}(-\frac{V_{\max}}{\phi_{mRNA}}+\frac{\tau \delta}{\tau\phi_{mRNA}-1}) $$

The simulation curve for an arbitraty number:

simulation

We can see the initial slope of the curve is rasing to a point and then decrease gradually which is highly fixed to the experiment result we get.

Decay of signal molecule
Review

In basic model, we consider the decay of signal can be neglected because we found there's no significant difference between concentration in vitro. But actually when we meature the rough concentration in the LB with E.coli, we found that the concentration has a linear deacrease through time, which we should take consideration into our model.

The decay can be shown as following equation:

$$ [S]_t=[S]_{initial}-k_{decay}t $$

And the $v_{generate}$ becomes to:

$$ v_{generate}= V_{\max}\frac{([S]_t)^n}{k^n+([S]_t)^n}\\ \frac{d}{dt}v_{generate}=-\frac{ V_{\max}·k_{decay}}{k}\frac{n([S]_t)^{n-1}}{(k^n+([S]_t)^n)^2} $$

According to the solution we deduced before, we have:

$$ [protein]=\frac{\phi_2}{\phi_2-\phi_1}e^{-\phi_{mRNA}t}(\int v_{generate}·e^{\phi_{mRNA}t}dt+C)+\frac{\phi_2}{\phi_1(\phi_2-\phi_1)}·\frac{d}{dt}v_{generate}+A^*·e^{-\phi_2 t} $$

Surely the first step is to confirm this equation gives a reasonable result. Through using following mathematics conclution, we can approximately consider the integral as a summation:

$$ \int f(t) dt=F(t)+C=\int_a^tf(\mu)d\mu+F(a)+C $$

We assume $a=0$ which has no effect to the formula but has its biological meaning, which is the starting timepoint. So we have:

$$ \int v_{generate}·e^{\phi_{mRNA}t}dt=\int_0^t v_{generate}(\mu)·e^{\phi_{mRNA}\mu}d\mu\\ \approx\sum_{i=0}^{n}V_{\max}\frac{([S]_{initial}-k_{decay}i\Delta t)^n}{k^n+([S]_{initial}-k_{decay}i\Delta t)^n}·e^{\phi_{mRNA}i\Delta t}·\Delta t $$

Which

$$ n\Delta t=t $$

We use matlab to obtain a rough curve. X-axis refers to time.

decay

This is a important result because it indicates that the production will not always increase with the time going. Actually, there exists a so-called "best time" to process next step in our system. For example, this peak can determine when we dilute input signal to get output signal as much as possible.

合成酶

Red stars refers to "best time" according to different input concentration from upstream block.

*matlab code:

 

This matlab code shows how we draw the curves and how to find maximum.

Signal Producing

Review

In last part, we gives a approximate value of the protein we will get from our system:

$$ \lim_{t\to\infty}[protein]=S=\frac{C_1C_2 g_{protein}}{\phi_{protein}\phi_{mRNA}}v_{generate} $$

If we consider the decay of molecule, then we rewrite equation above as:

$$ [protein]_{\max}=S|_{t=t_{\max}}(1+\eta(\frac{v'_{generate}}{v_{generate}}+\frac{{v''_{generate}}}{v_{generate}})|_{t=t_{\max}})\\=\frac{C_1C_2 g_{protein}}{\phi_{protein}\phi_{mRNA}}v_{generate}|_{t=t_{\max}}(1+\eta(\frac{dv_{generate}}{dt}+\frac{{d^2v_{generate}}}{dt^2})|_{t=t_{\max}}) $$

Which:

$$ (\frac{dv_{generate}}{dt}+\frac{{d^2v_{generate}}}{dt^2})|_{t=t_{\max}}<0 $$

For simpilicity, we define the final production of goal protein as

$$ [protein]=S\propto v_{generate}|_{t=t_{max}} $$
Analyse

Now we focus on the differential equation related to the signal production:

$$ \frac{d[EAB]}{dt}=k_1[E][A][B]-(k_1+k_{-1})[EAB]\\ \frac{d[M_{signal}]}{dt}=k_2[EAB] $$

In this equation set, $[E]$ equals to the concentration of protein.

$$ [E]=[protein] $$

Finally we have:

$$ [EAB]=\frac{k_1[A][B]S}{-\phi_{protein}+k_{-1}+k_{1}}·e^{-\phi_{protein}t}+C_2·e^{-(k_{-1}+k_{1})t} $$

And the initial state:

$$ [EAB]|_{t=0}=0\\ \Longrightarrow C_2=\frac{k_1[A][B]S}{\phi_{protein}-k_{-1}-k_1} $$

Therefore:

$$ [EAB]=\frac{k_1[A][B]S}{-\phi_{protein}+k_{-1}+k_{1}}·(e^{-\phi_{protein}t}-e^{-(k_{-1}+k_{1})t})\\ \lambda_1=\phi_{protein}\\ \lambda_2=k_1+k_{-1}\\ \Longrightarrow [EAB]=C_2(e^{-\lambda_1t}-e^{-\lambda_2t}) $$

Finally we get:

$$ [M_{signal}]=k_2C_2(-\frac{e^{-\lambda_1t}}{\lambda_{1}}+\frac{e^{-\lambda_2t}}{\lambda_{2}})+C_3\\ \lim_{t\to\infty}[M_{signal}]=\frac{k_1k_2[A][B]}{\lambda_1\lambda_2}S $$

NOR Gate

This result can easily transit to NOR gate, because from mathematical perspective, the different places are initial values and another form of Hill equation. To describe the mechanism of NOR gate, we supposed that the whole system remains at steady state. (In other word, all concentrations remain as constants.)

$$ v_{inhibition}=V_{\max}-v_{generate}\\ \frac{d([mRNA])}{dt}=v_{inhibition}-\phi_{mRNA}[mRNA]=V_{\max}-v_{generate}-\phi_{mRNA}[mRNA]\\ \frac{d([protein])}{dt}=g_{protein}[mRNA]-\phi_{protein}[protein]\\ $$

We get:

$$ [mRNA]=\frac{v_{inhibition}}{\phi_{mRNA}}+C·e^{-\phi_{mRNA} t}\\ \Longrightarrow[mRNA]=A+B·e^{-\phi_{mRNA}t}\\ \lim_{t\to\infty}[mRNA]=\frac{v_{inhibition}}{\phi_{mRNA}} $$ $$ [protein]=g_{protein}\phi_{protein}^{-1}A+g_{protein}B(\phi_{protein}-\phi_{mRNA})^{-1}e^{-\phi_{mRNA} t}+C'e^{-\phi_{protein} t}\\ \Longrightarrow [protein]=A'+B'e^{-\phi_{mRNA} t}+C'e^{-\phi_{protein} t} $$

Furthermore we get:

$$ [M_{signal}]=A'·(k_1+k_2)^{-1}+B'·(-\phi_{mRNA}+k_1+k_2)^{-1}·e^{-\phi_{mRNA}t}\\+C'·(-\phi_{protein}+k_1+k_2)^{-1}·e^{-\phi_{protein}t}+D·e^{-(k_1+k_2)t} $$

With the relation:

$$ D=[M_{signal}]|_{t=0}-\{A'·(k_1+k_2)^{-1}+B'·(-\phi_{mRNA}+k_1+k_2)^{-1}\\+C'·(-\phi_{protein}+k_1+k_2)^{-1}\} $$

Also we have:

$$ \lim_{t\to\infty}[M_{signal}]=\frac{A'}{(k_1+k_2)}\\=\frac{g_{protein}}{(k_1+k_2)\phi_{protein}\phi_{mRNA}}·v_{inhibition} $$

Extra model

Review

Model of E.coli population:

$N_{E.coli}$ is satisfied to following equation:

$$ \frac{dN_{E.coli}}{dt}=rN_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}})\\ N_{E.coli}=\frac{N_{\max}}{1+(\frac{N_{\max}}{N_{t=0}}-1)·e^{-rt}} $$

$r$ refers to growth rate of E.coli and $N_{\max}$ refers to the limits of E.coli population. Since $N_{\max}$ and $N_{t=0}$are constants, so we define following parameter:

$$ \frac{N_{\max}}{N_{t=0}}-1=N_{c} $$

Two hypothesis:

  1. The signal molecule is toxic to E.coli, so the population will decrease related to the increase of concentration linearly.
  2. The signal molecule induce the synthesis of GFP which occupy the substance that is originally used for growth. It indicates that if the GFP is produced, then the population will be at low level, otherwise the population will be at normal level.
Analyse

To show the difference between these two hypothesis, we give following equation:

Hypothesis 1:

$$ \frac{dN_{E.coli}}{dt}=rN_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}})-\gamma N_{E.coli} $$

$\gamma$ refers to the death rate caused by toxic substance,$[S]$ refers to the concentration of signal molecule and $[S]_{critical}$ refers to the critical point which means all E.coli are dead:

$$ \gamma =r·(1-\frac{[S]}{[S]_{critical}}) $$

Therefore:

$$ \lim_{t\to+\infty}N_{E.coli}=N_{\max}·(1-\frac{[S]}{[S]_{critical}}) $$

toxic

X-axis refers to the time and Y-axis refers to the growth curves. Different curves refer to different concentrations.

Hypothesis 2:

$$ \frac{dN_{E.coli}}{dt}=r·N_{E.coli}(1-\frac{N_{E.coli}}{N_{\max}·\beta}) $$

$\beta$ refers to the ratio of limiting the growth of E.coli, which fits to following equation:

$$ \beta =1-\beta_{\lim}·\frac{[S]^n}{k^n+[S]^n} $$

The reason we use the efficiency of mRNA generation is because this ratio determines how many GFP will be finally produced. For example, if the ratio is high, the production of GFP will be at high level, which also means the most of substance are used to produce GFP instead of growth of E.coli.

Therefore:

$$ N_{E.coli}=\frac{N_{\max}·\beta}{1+(\frac{N_{\max}}{N_{t=0}}-1)·e^{-r t}} $$

质料

X-axis refers to the time and Y-axis refers to the growth curves. Different curves refer to different concentrations. Low concentration refers to high population and high concentration refers to low population.

From our data, we found the result showed that hypothesis two was more realistic.

experiment data

The experiment shows an obvious difference between low concentration and high concentration which fitts to the hypothesis two.

But we also cannot eliminate the hypthesis one, because the curves of low concentration go to steady state but the high concentration go slightly down. If we use hypothesis two to explain this phenomemon, that is: The production of GFP highly occupy the resource and leave little resource for the growth of E.coli even cannot mantain the population at the steady state. If we use hypothesis one, then the result is obvious that signal molecule is toxic to E.coli which causes unavoidable death of E.coli. So further study is required.

Modeling Our Project

5 (2)

5 (1)

6

$$ \begin{align} \frac{{\mathrm{d}\left( {QS1R} \right)}}{{\mathrm{d}t}}&= {C_{QS1R}} + H\left( {{{\left[ M \right]}_e}} \right)\\ \frac{{\mathrm{d}\left( {\left[ {mRN{A_1}} \right]} \right)}}{{\mathrm{d}t}}&= \frac{{\mathrm{d}\left( {QS1R} \right)}}{{\mathrm{d}t}} - {\emptyset _1}\left[ {mRNA} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_1}} \right]} \right)}}{{\mathrm{d}t}}&= {g_1}\left[ {mRN{A_1}} \right] - {\emptyset _2}\left[ {protei{n_1}} \right] - \frac{{\mathrm{d}\left( {\left[ M \right]} \right)}}{{\mathrm{d}t}}\\ {K_1}&= \frac{{\left[ {protei{n_1}} \right]\left[ {QS1 - AHL} \right]}}{{\left[ M \right]}}\\ H\left( {\left[ x \right]} \right)&= \frac{{{V_{\max }}{{\left[ x \right]}^m}}}{{{{\left[ x \right]}^m} + {K_a}^m}}\\ {\left[ M \right]_e}&= {P_e}\left[ M \right]\\ {P_{activated}}&= {P_e} + {P_e}'= P\left[ {QS1{R_{translated}}|{M_{combined}}} \right]\\ 1&= {P_{activated}} \cdot {P_{combined}} + {P_{cons}} \cdot \overline {{P_{combined}}} + {P_{inactivated}}\\ \frac{{\mathrm{d}\left( {CI} \right)}}{{\mathrm{d}t}}&= {C_{CI}} + H\left( {{{\left[ M \right]}_{e'}}} \right)\\ \frac{{\mathrm{d}\left( {\left[ {mRN{A_2}} \right]} \right)}}{{\mathrm{d}t}}&= \frac{{\mathrm{d}\left( {CI} \right)}}{{\mathrm{d}t}} - {\emptyset _3}\left[ {mRN{A_2}} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_2}} \right]} \right)}}{{\mathrm{d}t}}&= {g_2}\left[ {mRN{A_2}} \right] - {\emptyset _4}\left[ {protei{n_2}} \right] - H\left( {{{\left[ {protei{n_2}} \right]}_e}} \right)\\ {\left[ {protei{n_2}} \right]_e}&= {P_{activated}}\left[ {protei{n_2}} \right]\\ 1&= {P_{activated}} \cdot {P_{combined}} + {P_{cons}} \cdot \overline {{P_{combined}}} + {P_{inactivated}}\\ \frac{{\mathrm{d}\left( {QS2I} \right)}}{{\mathrm{d}t}}&= {C_{QS2I}} + H'\left( {{{\left[ {protei{n_2}} \right]}_e}} \right)\\ \frac{{\mathrm{d}\left( {\left[ {mRN{A_3}} \right]} \right)}}{{\mathrm{d}t}}&= \frac{{\mathrm{d}\left( {QS2I} \right)}}{{\mathrm{d}t}} - {\emptyset _5}\left[ {mRN{A_3}} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_3}} \right]} \right)}}{{\mathrm{d}t}}&= {g_3}\left[ {mRN{A_3}} \right] - {\emptyset _6}\left[ {protei{n_3}} \right] - \frac{{\mathrm{d}\left( {\left[ N \right]} \right)}}{{\mathrm{d}t}}\\ \frac{{\mathrm{d}\left( {CI} \right)}}{{\mathrm{d}t}}&= {C_{CI}} + H\left( {{{\left[ M \right]}_{e'}}} \right)\\ \frac{{\mathrm{d}\left( {\left[ {mRN{A_2}} \right]} \right)}}{{\mathrm{d}t}}&= \frac{{\mathrm{d}\left( {CI} \right)}}{{\mathrm{d}t}} - {\emptyset _3}\left[ {mRN{A_2}} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_2}} \right]} \right)}}{{\mathrm{d}t}}&= {g_2}\left[ {mRN{A_2}} \right] - {\emptyset _4}\left[ {protei{n_2}} \right] - H\left( {{{\left[ {protei{n_2}} \right]}_e}} \right)\\ {\left[ {protei{n_2}} \right]_e}&= {P_{activated}}\left[ {protei{n_2}} \right]\\ 1&= {P_{activated}} \cdot {P_{combined}} + {P_{cons}} \cdot \overline {{P_{combined}}} + {P_{inactivated}}\\ \frac{{\mathrm{d}\left( {QS2I} \right)}}{{\mathrm{d}t}}&= {C_{QS2I}} + H'\left( {{{\left[ {protei{n_2}} \right]}_e}} \right)\\ \frac{{\mathrm{d}\left( {\left[ {mRN{A_3}} \right]} \right)}}{{\mathrm{d}t}}&= \frac{{\mathrm{d}\left( {QS2I} \right)}}{{\mathrm{d}t}} - {\emptyset _5}\left[ {mRN{A_3}} \right]\\ \frac{{\mathrm{d}\left( {\left[ {protei{n_3}} \right]} \right)}}{{\mathrm{d}t}}&= {g_3}\left[ {mRN{A_3}} \right] - {\emptyset _6}\left[ {protei{n_3}} \right] - \frac{{\mathrm{d}\left( {\left[ N \right]} \right)}}{{\mathrm{d}t}} \end{align} $$