Difference between revisions of "Team:Dalhousie/Description"

 
(362 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<html>
 
<html>
 
<head>
 
<head>
 +
<style>
 +
#bg-video {
 +
        position: fixed;
 +
        top: 0;
 +
        right: 0;
 +
        bottom: 0px;
 +
        left: 0;
 +
        overflow: hidden;
 +
        z-index: -100;
 +
        width:100%;
 +
 +
}
 +
</style>
 +
 
<!--glyphicons-->
 
<!--glyphicons-->
 
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
 
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
Line 6: Line 20:
 
   <link rel="stylesheet" href="https://2017.igem.org/Team:Dalhousie/libraries/css/fonts?action=raw&ctype=text/css" />
 
   <link rel="stylesheet" href="https://2017.igem.org/Team:Dalhousie/libraries/css/fonts?action=raw&ctype=text/css" />
 
<link rel="stylesheet" href="https://2017.igem.org/Team:Dalhousie/css3?action=raw&ctype=text/css" />
 
<link rel="stylesheet" href="https://2017.igem.org/Team:Dalhousie/css3?action=raw&ctype=text/css" />
 +
 +
<!--------------------oldnavbar--------------->
 +
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
 +
  
 
<!-------------------------------------need this--------------------------->
 
<!-------------------------------------need this--------------------------->
Line 11: Line 29:
 
#home_logo, #sideMenu { display:none; }
 
#home_logo, #sideMenu { display:none; }
 
#sideMenu, #top_title, .patrollink  {display:none;}
 
#sideMenu, #top_title, .patrollink  {display:none;}
#content { width:100%; padding:0px;  margin-top:-20px; margin-left:0px; background-color: #0A0606;}
+
#content { width:100%; padding:0px;  margin-top:-20px; margin-left:0px; background-color: white;}
body {background-color:black; }
+
body {background-color:white; }
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px;  background-color: transparent;}
+
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 10px;  background-color: transparent; z-index:100;}
 
         .jumbotron {
 
         .jumbotron {
             height: 720px;
+
             height: 850px;
 
             position: relative;
 
             position: relative;
            z-index:-101;
+
         
 
             }
 
             }
#bg-video {
+
.navbar-default .navbar-nav>.active>a, .nav > li > a:hover, .nav > li > a:focus {
        position: fixed;
+
  background-color: #C1D35D;
        top: 0;
+
  text-decoration: none;
        right: 0;
+
        bottom: 0;
+
        left: 0;
+
        overflow: hidden;
+
        z-index: -100;
+
        width:100%;
+
 
}
 
}
  </style>
+
</style>
 
+
<!----------------------------------------------navbarshit---------------------------------------------->
+
  
  
  <meta charset="utf-8">
 
  <meta name="viewport" content="width=device-width, initial-scale=1">
 
  <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">
 
  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
 
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
 
 
</head>
 
</head>
  
 
 
<body>
 
<body>
  
 +
<!-------------------navbar---------------------->
 +
<div id="nav" class="noBackground" style="width:100%; z-index:100;" >
 +
            <div class="inner" >
 +
<div id="navWrap">
 +
    <nav >
 +
<div class="container-fluid">
 +
    <ul class="nav navbar-nav navbar-center">
  
<!--------------------------------------------------------------video------------------------------------------------------------------------------>
+
      <li class="active" ><a href="https://2017.igem.org/Team:Dalhousie" style=" color: white;">Home</a></li>
 
+
<div class="jumbotron text-center " style= "background-color: transparent;">
+
   
+
<video  id= "myVideo" class="bg-video" style="top:0px;left:0px;position:absolute;width:100%;z-index:-1;" autoplay="true" loop="loop" preload="metadata" muted="muted">
+
        <source src="https://static.igem.org/mediawiki/2017/0/06/Again.mp4" type="video/mp4" />
+
    </video>
+
 
+
 
+
 
+
 
+
<div id="page-wrap"style="padding-top:10px;  ">
+
  
  <h1  style="color:white;"> Dalhousie iGEM </h1>
+
<li class="dropdown" >
 +
        <a class="dropdown-toggle" data-toggle="dropdown" href="#" style=" color: white;">Project
 +
        </a>
 +
        <ul class="dropdown-menu" style=" background-color: rgba(193,211,93,0.8);">
 +
          <li><a href="https://2017.igem.org/Team:Dalhousie/Description"  >Description</a></li>
 +
          <li><a href="https://2017.igem.org/Team:Dalhousie/Design">Design</a></li>
 +
<li><a href="https://2017.igem.org/Team:Dalhousie/Requirements">Requirements</a></li>
  
 
 
 
 
 
 
 
</div>
 
</div>
 
 
                     
 
 
 
 
<div class="container" id="projectdescript" style="padding-bottom:50px; padding-top:50px; padding-right:0px; padding-left:0px;  background-color: transparent;">
 
 
 
 
             
 
<h4 style="text-align:center; color: white;">Background</h4>
 
<p style="text-align:center; color: white;">
 
Canada’s forests represent not only an established source of economic revenue, but also a potential source for biofuel substrate. Ligno-cellulosic by-products from pulp and paper processing are removed using chemicals, heat, and water. Microbial cellulose-degrading enzymes are high-value targets for industrial applications. Focused on innovative applications of synthetic biology, the undergraduate Dalhousie iGEM team has undertaken a multi-year project to harness the degradative capacity of microorganisms to convert cellulose into ethanol for biofuel applications. Advances in DNA sequencing technology and bioinformatics have revolutionized our ability to identify useful genes in complex biological samples. We hypothesize that the porcupine microbiome, which includes microorganisms capable of digesting bark and tree resin, will be a rich source of these useful genes. If our hypothesis is correct, mining the porcupine microbiome has the advantage of finding a suite of enzymes that have evolved to work in concert to efficiently degrade cellulose. </p>
 
 
<h4 style="text-align:center; color: white;">The Project</h4>
 
<p style="text-align:center; color: white;">
 
Using a combination of metagenomic library construction and bioinformatic analysis we aim to find known cellulolytic enzymes as well as discover novel enzymes.
 
Screening of our metagenomic library will allow us to look for a diverse selection of enzymes, including cellulolytic and lignolytic ones by plating on cellulose-only media. The clones that grow can be sequenced for confirmation and cloned into biobricks.
 
Our new bioinformatic pipeline now allows us to look for conserved domains rather than known enzymes. This is extremely powerful as it may allow us to discover new enzymes that share catalytic domains with cellulases but are otherwise totally novel.
 
The goal of this project is to construct a bioreactor where cellulose would be the input, D-glucose the output and E.coli expressing a suite of cellulolytic enzymes would be the workhorse, converting one to the other. Future goals would be to combine this in co-culture with yeast for the last step in bio-ethanol production.</p>
 
</div></div>
 
 
 
 
 
 
    <!------------------------------------------------------------------------------- Navbar -------------------------------------------------------------------------->
 
<nav class="navbar navbar-inverse navbar-fixed-bottom">
 
  <div class="container-fluid">
 
   
 
    <ul class="nav navbar-nav navbar-center">
 
      <li><a href="https://2017.igem.org/Team:Dalhousie/test3">Home</a></li>
 
     
 
 
<li class="dropdown">
 
        <a class="dropdown-toggle" data-toggle="dropdown" href="#">The Project
 
        <span class="caret"></span></a>
 
        <ul class="dropdown-menu">
 
          <li class="active"><a href="https://2017.igem.org/Team:Dalhousie/Description">Description</a></li>
 
          <li><a href="#">Design</a></li>
 
          <li><a href="#">Experiments</a></li>
 
          <li><a href="#">Notebook</a></li>
 
          <li><a href="#">Interlab</a></li>
 
          <li><a href="#">Contribution</a></li>
 
          <li><a href="#">Model</a></li>
 
          <li><a href="#">Results</a></li>
 
          <li><a href="#">Demonstrate</a></li>
 
        <li><a href="#">Improve</a></li>
 
          <li><a href="#">Attributions</a></li>
 
 
         </ul>
 
         </ul>
 
       </li>
 
       </li>
  
     
 
 
<li class="dropdown">
 
<li class="dropdown">
         <a class="dropdown-toggle" data-toggle="dropdown" href="#">Our Team
+
         <a class="dropdown-toggle" data-toggle="dropdown" href="#" style=" color: white;">Results
        <span class="caret"></span></a>
+
        </a>
         <ul class="dropdown-menu">
+
         <ul class="dropdown-menu" style=" background-color: rgba(193,211,93,0.8);">
           <li><a href="#">Team</a></li>
+
           <li><a href="https://2017.igem.org/Team:Dalhousie/InterLab">Interlab</a></li>
          <li><a href="#">Collaborations</a></li>
+
  <li><a href="https://2017.igem.org/Team:Dalhousie/Results">Results</a></li>
 
         </ul>
 
         </ul>
      </li>
+
</li>  
  
 +
 
 
<li class="dropdown">
 
<li class="dropdown">
         <a class="dropdown-toggle" data-toggle="dropdown" href="#">Parts
+
         <a class="dropdown-toggle" data-toggle="dropdown" href="#" style=" color: white;">Team
        <span class="caret"></span></a>
+
        </a>
         <ul class="dropdown-menu">
+
         <ul class="dropdown-menu" style=" background-color: rgba(193,211,93,0.8);">
           <li><a href="#">Parts</a></li>
+
           <li><a href="https://2017.igem.org/Team:Dalhousie/Team">Team</a></li>
           <li><a href="#">Basic Parts</a></li>
+
           <li><a href="https://2017.igem.org/Team:Dalhousie/Collaborations">Collaborations</a></li>
           <li><a href="#">Composite Parts</a></li>
+
           <li><a href="https://2017.igem.org/Team:Dalhousie/Attributions">Attributions</a></li>
           <li><a href="#">Part Collections</a></li>
+
           <li><a href="https://2017.igem.org/Team:Dalhousie/Sponsors">Sponsors</a></li>
 
         </ul>
 
         </ul>
      </li>
+
</li>
 
+
      <li><a href="#">Safety</a></li>
+
  
 
<li class="dropdown">
 
<li class="dropdown">
         <a class="dropdown-toggle" data-toggle="dropdown" href="#">Human Practices
+
         <a class="dropdown-toggle" data-toggle="dropdown" href="#" style=" color: white;">Human Practices
         <span class="caret"></span></a>
+
         </a>
         <ul class="dropdown-menu">
+
         <ul class="dropdown-menu" style=" background-color: rgba(193,211,93,0.8);">
          <li><a href="#">Silver HP</a></li>
+
        <li><a href="https://2017.igem.org/Team:Dalhousie/Human_Practices">Summary</a></li>
           <li><a href="#">Integrated and Gold</a></li>
+
          <li><a href="https://2017.igem.org/Team:Dalhousie/HP/Silver">Science Communication</a></li>
           <li><a href="#">Public Engagement</a></li>
+
           <li><a href="https://2017.igem.org/Team:Dalhousie/HP/Gold_Integrated">Integrated and Gold</a></li>
          <li><a href="#">Part Collections</a></li>
+
           <li><a href="https://2017.igem.org/Team:Dalhousie/Engagement">Public Engagement</a></li>
 +
<li><a href="https://2017.igem.org/Team:Dalhousie/SocialMedia">Social Media</a></li>
 +
     
 
         </ul>
 
         </ul>
 
       </li>
 
       </li>
  
 
<li class="dropdown">
 
<li class="dropdown">
         <a class="dropdown-toggle" data-toggle="dropdown" href="#">Awards
+
         <a class="dropdown-toggle" data-toggle="dropdown" href="#" style=" color: white;">Lab
         <span class="caret"></span></a>
+
         </a>
        <ul class="dropdown-menu">
+
        <ul class="dropdown-menu" style=" background-color: rgba(193,211,93,0.8);">
          <li><a href="#">Applied Design</a></li>
+
          <li><a href="https://2017.igem.org/Team:Dalhousie/Parts">Parts</a></li>
           <li><a href="#">Entrepreneurship</a></li>
+
          <li><a href="https://2017.igem.org/Team:Dalhousie/Safety" >Safety</a></li>
 +
            <li><a href="https://2017.igem.org/Team:Dalhousie/Experiments">Experiments</a></li>
 +
           <li><a href="https://2017.igem.org/Team:Dalhousie/Notebook">Notebook</a></li>
 +
<li><a href="https://2017.igem.org/Team:Dalhousie/Improve">Improve</a></li>
 
         </ul>
 
         </ul>
 
       </li>
 
       </li>
 +
 +
     
 +
  
  
Line 170: Line 126:
 
<ul class="nav navbar-nav navbar-right">
 
<ul class="nav navbar-nav navbar-right">
 
     <div class="navbar-header">
 
     <div class="navbar-header">
       <a class="navbar-brand" >Contact us today </a>
+
       <a class="navbar-brand" style=" color: white;">Contact us today </a>
 
     </div>
 
     </div>
 
<li>
 
<li>
                         <a href="mailto:igemdalhousie@gmail.com" ><i class="fa fa-envelope-o fa-fw"></i> <span class="network-name"></span></a>
+
                         <a href="mailto:igemdalhousie@gmail.com" ><i class="fa fa-envelope-o fa-fw" style=" color: white;"  ></i> <span class="network-name"></span></a>
 
                     </li>
 
                     </li>
 
<li>
 
<li>
                         <a target="_blank" href="https://twitter.com/dalhousie_igem?lang=en" ><i class="fa fa-twitter fa-fw"></i> <span class="network-name"></span></a>
+
                         <a target="_blank" href="https://twitter.com/dalhousie_igem?lang=en" ><i class="fa fa-twitter fa-fw" style=" color: white;" ></i> <span class="network-name"></span></a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a target="_blank" href="https://www.facebook.com/Dalhousie.iGEM/" ><i class="fa fa-facebook fa-fw"></i> <span class="network-name"></span></a>
+
                         <a target="_blank" href="https://www.facebook.com/Dalhousie.iGEM/" ><i class="fa fa-facebook fa-fw" style=" color: white;" ></i> <span class="network-name"></span></a>
 
                     </li>
 
                     </li>
 +
 
     </ul>
 
     </ul>
 
   </div>
 
   </div>
 
</nav>
 
</nav>
      
+
</div>
             
+
            </div>
 +
        </div>
 +
 
 +
 
 +
 
 +
 +
        <div class="panel" id="panel1" >
 +
 
 +
            <div class="inner" >
 +
<div class="top" ><div class="title" >Project Description</div></div>
 +
 
 +
 
 +
<img src= "https://static.igem.org/mediawiki/2016/a/a9/T--Dalhousie_Halifax_NS--CBForest.jpeg" style="top:0px; left:0px; padding-bottom:0px; position:fixed; width:100%; height: 100%; z-index:-100; " align="center" height="70%" width="70%">
 +
 
 +
 
 +
<!--------------------------------fade title---------------------------->
 +
<style>body {
 +
  margin: 0;
 +
  height: 10px;
 +
}
 +
 
 +
.top {
 +
 
 +
  margin-top: 300px;
 +
  position: absolute;
 +
width:55%;
 +
  left:300px;
 +
  background-color: transparent;
 +
  height: 150px;
 +
  text-align: center;
 +
  font-family: 'Trebuchet MS';
 +
  font-size: 80px;
 +
  font-weight: 100;
 +
  color: white;
 +
line-height: 70px;
 +
}
 +
 
 +
.title {
 +
  position: relative;
 +
top: 30%;
 +
 
 +
  left: 0px;
 +
}
 +
 
 +
</style>
 +
 
 +
<!---------------------------------------------------------------------------------this------------------------------------------------------------------------------------------->
 +
<script> $(window).scroll(function(){
 +
     $(".top").css("opacity", 1 - $(window).scrollTop() / 400);
 +
  });</script>
 +
            </div>
 +
        </div>
 +
 
 +
 
 +
 
 +
        <div class="panel" id="panel2">
 +
            <div class="inner" >
 +
 
 +
<div style="background-color: rgba(35,47,19,1); width: 90%; padding-left: 50px; padding-right: 50px; float: center; margin-top: 20px; margin-left: 70px;">
 +
<center><h2><font color= "#C1D35D">WHY</font></h2></center>
 +
 
 +
As fossil fuels continue to run out across the globe, many people are looking towards alternative sources of energy that are renewable and sustainable. One of these options is biofuel, fuel made from organic matter. Biofuel is most commonly made from ethanol, or bioethanol, which can be used as a fuel for vehicles in its pure form. In the field of biofuel production, bioethanol made from cellulose continues to be the dominant form; however, harsh methods are required to be able to extract the sugars from cellulose and convert it to ethanol. </br>
 +
In Atlantic Canada, the main export is wood, pulp, and paper. The processes of these mills have been shown to be environmentally unsound with large quantities of hazardous waste being expelled. As many of our members have seen first-hand, growing up near these pulp and paper mills. Along with hazardous waste practices, the extraction of usable materials from wood is fairly inefficient. These mills leave behind a great deal of wood waste that could be used for biofuel production if broken down and converted to ethanol. The only question is: how?
 +
</br></br>
 +
</div>
 +
 
 +
<div style="background-color: black; width: 100%; height: 4px; padding-left: 10px; padding-right: 10px; float: left; margin-top: 20px; "></br></br></div>
 +
 
 +
 
 +
<div style="background-color: rgba(35,47,19,1); width: 500px; padding-left: 50px; padding-right: 50px; float:left; margin-top:40px; margin-left: 130px; margin-right: 50px;">
 +
<center><h2><font color= "#C1D35D">WHAT</font></h2></center>
 +
The Dalhousie iGEM team this year is focused on using the microbiome of the porcupine to solve this conversion of wood waste to ethanol.</br>
 +
A large part of the porcupine’s diet is made up of bark. Unable to digest the cellulose, hemi-cellulose, and lignin in the bark, the gut bacteria of the porcupine do the work instead. We hypothesized that the microbiome of the porcupine would contain enzymes that convert cellulose, hemi-cellulose, and lignin to glucose; a usable sugar.</br>
 +
If true, we would be able to mine metagenomic sequencing for these enzymes, clone them into <i>E.coli</i>, creating a system that could convert cellulose to glucose. </br>
 +
Finally, we would use this expression system in a bioreactor containing both <i>E. coli</i> and yeast to create ethanol from wood waste. The yeast being an integral part of the system to ferment the glucose created by the <i>E. coli</i> to ethanol, our biofuel.</br></br></br>
 +
</div>
 +
 
 +
<img src= "https://static.igem.org/mediawiki/2017/1/10/Daldegtrans.png"  height="40%" width="40%" style="padding-top:50px; padding-left:100px;" >
 +
<img src= "https://static.igem.org/mediawiki/2017/9/9b/Dalhemitrans.png"  height="40%" width="40%" style="padding-top:50px; padding-left:100px;" >
 +
 
 +
<div style="background-color: black; width: 100%; height: 4px; padding-left: 10px; padding-right: 10px; float: left; margin-top: 20px; "></br></br></div>
 +
 
 +
<div style="background-color: rgba(35,47,19,1); height:110%; font-size: 35px;  padding-left: 100px; padding-right: 100px;  margin-top: 50px; margin-left:350px; margin-right:350px;">
 +
<center><font color= "#C1D35D"><h2>HOW WE DID IT</h2></font></center>
 +
</div>
 +
 
 +
<div style="background-color: rgba(35,47,19,1); width: 900px; padding: 20px;  margin: auto; margin-bottom: 30px; margin-top: 50px; ">
 +
<b><font color= "#C1D35D">Dry Lab</font></b></br>
 +
This year’s team extended last year’s project to find a higher quantity of DNA sequences and key enzymes within the cellulose and hemicellulose degradation pathway. The team focused on bioinformatics, more specifically a metagenomic pipeline and metagenomic library. The metagenomic library was produced through the collaboration with Dr. Trevor Charles at the University of Waterloo. Along with the production of the metagenomic pipeline and library, the team planned to co-culture cellulose-degrading <i>E. coli</i> and yeast in a bioreactor, in order to produce ethanol from cellulose.  </br></br>
 +
For the synthetic metagenomic library, the team used the Illumina MiSeq data from last year’s four fecal samples: Artic Wolf, Coyote, Porcupine, and Beaver. The porcupine Illumina MiSeq data was used to discover enzymes within the cellulose and hemicellulose degradation pathways. The process of shotgun sequencing, as seen in Illumina MiSeq technology, required short inputs of DNA that were ~300 base pairs. The length of base pairs required for a full gene is much longer. Thus, the team used another program, MegaHIT, which allowed them to stitch together sequences to get a fragment yield of 1,000 base pairs. </br>
 +
Once the larger fragments were formed the team used the program, Prodigal, to identify the open reading frames (ORFs). Prodigal is responsible for locating ribosome binding sites, through the identification of the start and stop codons. Lastly, jackHMMR was used to find protein domains, with respect to the predicted function. </br></br>
 +
 
 +
<center><img src ="https://static.igem.org/mediawiki/2017/d/d4/Dalbioinfo4.png" width="80%"></center> </br>
 +
 
 +
</div>
 +
 
 +
 
 +
 
 +
<div style="background-color: rgba(35,47,19,1); width: 900px; padding: 20px; margin: auto;  margin-bottom: 30px;">
 +
<b><font color= "#C1D35D">Wet Lab</font></b></br>
 +
The team focused on beta-glucosidase, endoglucanase, and beta-xylanase for the cellulose and hemicellulose degradation pathway. The genes were optimized for expression within <i>E. coli</i>, and once all were modified, the team submitted them for synthesis at Integrated DNA Technologies (IDT). Each were cloned into the pET26b(+) expression vector system. pET26b(+) encodes a pelB sequence at the N-terminus of the protein of interest which is responsible for localization of the protein of interest to the periplasm. From the periplasm, soluble proteins are able to diffuse into the surrounding environment or are secreted.</br></br>
 +
 
 +
 
 +
Once successfully cloned, the team aimed to characterize beta-xylanase. Beta-xylanase, is a key enzyme in the hemicellulose degradation pathway that cleaves xylose dimers to usable xylose monomers. Using a Coomassie Blue stain for total protein expression, the team was able to show that this novel enzyme is able to be expressed in <i>E. coli</i> in the pET26b(+) expression vector system. The team took a step further and attempted to assess the enzymatic activity of this novel beta-xylanase using a modified version of a cellulase/xylanase activity fluorophore assay (Chen et al., 2016). Using xylobiose conjugated to a fluoro-active molecule, we were able to determine the relative activity of our novel beta-xylanase relative to pet26b(+) alone. We discovered that under the conditions we provided the enzyme was not able to function properly (ie. cleave the substrate), possibly due to the differences in oxidation states of the gut and open air or due to pH differences from the protein’s natural environment.</br>
 +
</div>
 +
</br>
 +
 
 +
<div style="background-color: rgba(35,47,19,1); width: 900px; padding: 20px; margin: auto;  margin-bottom: 30px;">
 +
<b><font color= "#C1D35D">References</font></b></br>
 +
    Bolger, AM., Lohse, M, and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Int Soc Comp Bi. 30(15): 2114-2120.</br></br>
 +
   
 +
    Chen, H. M., Armstrong, Z., Hallam, S. J., & Withers, S. G. (2016). Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity. Carbohydr. Res. 421, 33-39.</br></br>
 +
   
 +
    EMBL-EBI. 2017. HMMER Biosequence analysis using profile hidden Markov Models [internet]. Cambridgeshire (UK): European Molecular Biology Laboratory. Available from: https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer</br></br>
 +
   
 +
    Houghton, J., Weatherwax, S., & Ferrell, J. (2006). Breaking the biological barriers to cellulosic ethanol: a joint research agenda (No. DOE/SC--0095). EERE Publication and Product Library.</br></br>
 +
 
 +
    Kopylova, E, Noé L, and Touzet H. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Int Soc Comp Bi. 28(24), 3211-3217.</br></br>
 +
 
 +
    Sockolosky, J. T., & Szoka, F. C. 2013. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr Purif. 87(2), 129-135.</br></br>
 +
</div>
 +
 
 +
 
 +
 
 +
 
 +
           
 +
            </div>
 +
        </div>
 +
 
 +
 
 +
<div class="container" style="height:450px; width:100%; position: relative;"><!--------empty panel---------->
 +
</div>
 +
 
 +
 
 +
  <div class="panel panel-red" id="panel3">
 +
<p style="text-align: center; ">
 +
<a href="http://www.plosibilities.wordpress.com"><img src="https://static.igem.org/mediawiki/2017/archive/8/8c/20171031235427%21Dalscreen.png" height="20%" width="20%" ></a>
 +
<img src="https://static.igem.org/mediawiki/parts/d/d7/Porcupinelogo2017.png" height="20%" width="20%" >
 +
<img src="https://static.igem.org/mediawiki/2017/e/ef/Whitetigerlogo.png" height="20%" width="20%" >
 +
</p>
 +
           
 +
        </div>
 +
 
 +
<style>
 +
html {
 +
height: 100%;
 +
min-height: 100%;
 +
}
 +
 
 +
body {
 +
height: 100%;
 +
}
 +
 
 +
.panel {
 +
width: 100%;
 +
height: 100%;
 +
background: black;
 +
color: #fff;
 +
padding-left: 1%;
 +
padding-right: 1%;
 +
text-align: center;
 +
}
 +
 
 +
 
 +
 
 +
 
 +
 
 +
.panel.panel-red {
 +
background: black;
 +
 
 +
}
 +
#nav {
 +
position: fixed;
 +
top: 0;
 +
left: 0;
 +
width: 96%;
 +
padding: 2%;
 +
z-index: 100;
 +
color: white;
 +
height: 80px;
 +
}
 +
 
 +
.noBackground {
 +
background-color: rgba(0,0,0,0);
 +
visibility: visible;
 +
width:100%;
 +
padding-right:0px;
 +
    -webkit-transition: all 1.0s ease;
 +
    -moz-transition: all 1.0s ease;
 +
    -o-transition: all 1.0s ease;
 +
    transition: all 1.0s ease;
 +
}
 +
 
 +
.blackBackground {
 +
background-color: rgba(35,47,19,0.7);
 +
visibility: visible;
 +
width:100%;
 +
 
 +
}
 +
 
 +
#nav .inner {
 +
z-index:100;
 +
padding-bottom:40px;
 +
 
 +
}
 +
 
 +
#nav ul {
 +
list-style: none;
 +
margin: 0;
 +
padding: 0;
 +
}
 +
 
 +
 
 +
 
 +
#inner{
 +
z-index:101;
 +
 
 +
}
 +
 
 +
#panel1{
 +
background: transparent;
 +
height: 850px;
 +
width:100%;
 +
z-index:100;
 +
}
 +
#panel2{
 +
width:100%;
 +
height: 100%;
 +
margin-bottom:0px;
 +
background: rgba(192,192,192,0.75);
 +
text-align:left;
 +
 
 +
 
 +
}
 +
#panel3{
 +
width:100%;
 +
height: 100%;
 +
margin-bottom:-100px;
 +
background: rgba(35,47,19,0.9);
 +
}
 +
 
 +
 
 +
 
 +
 
 +
</style>
 +
<script>
 +
$( function() {
 +
//caches a jQuery object containing the header element
 +
var header = $('.noBackground');
 +
$(window).scroll(function() {
 +
var scroll = $(window).scrollTop();
 +
 
 +
if (scroll >= 100) {
 +
header.addClass('blackBackground');
 +
} else {
 +
header.removeClass('blackBackground');
 +
                     
 +
}
 +
});
 +
});
 +
</script>
  
 
</body>
 
</body>
 +
<html>

Latest revision as of 02:50, 2 November 2017

Project Description

WHY

As fossil fuels continue to run out across the globe, many people are looking towards alternative sources of energy that are renewable and sustainable. One of these options is biofuel, fuel made from organic matter. Biofuel is most commonly made from ethanol, or bioethanol, which can be used as a fuel for vehicles in its pure form. In the field of biofuel production, bioethanol made from cellulose continues to be the dominant form; however, harsh methods are required to be able to extract the sugars from cellulose and convert it to ethanol.
In Atlantic Canada, the main export is wood, pulp, and paper. The processes of these mills have been shown to be environmentally unsound with large quantities of hazardous waste being expelled. As many of our members have seen first-hand, growing up near these pulp and paper mills. Along with hazardous waste practices, the extraction of usable materials from wood is fairly inefficient. These mills leave behind a great deal of wood waste that could be used for biofuel production if broken down and converted to ethanol. The only question is: how?



WHAT

The Dalhousie iGEM team this year is focused on using the microbiome of the porcupine to solve this conversion of wood waste to ethanol.
A large part of the porcupine’s diet is made up of bark. Unable to digest the cellulose, hemi-cellulose, and lignin in the bark, the gut bacteria of the porcupine do the work instead. We hypothesized that the microbiome of the porcupine would contain enzymes that convert cellulose, hemi-cellulose, and lignin to glucose; a usable sugar.
If true, we would be able to mine metagenomic sequencing for these enzymes, clone them into E.coli, creating a system that could convert cellulose to glucose.
Finally, we would use this expression system in a bioreactor containing both E. coli and yeast to create ethanol from wood waste. The yeast being an integral part of the system to ferment the glucose created by the E. coli to ethanol, our biofuel.




HOW WE DID IT

Dry Lab
This year’s team extended last year’s project to find a higher quantity of DNA sequences and key enzymes within the cellulose and hemicellulose degradation pathway. The team focused on bioinformatics, more specifically a metagenomic pipeline and metagenomic library. The metagenomic library was produced through the collaboration with Dr. Trevor Charles at the University of Waterloo. Along with the production of the metagenomic pipeline and library, the team planned to co-culture cellulose-degrading E. coli and yeast in a bioreactor, in order to produce ethanol from cellulose.

For the synthetic metagenomic library, the team used the Illumina MiSeq data from last year’s four fecal samples: Artic Wolf, Coyote, Porcupine, and Beaver. The porcupine Illumina MiSeq data was used to discover enzymes within the cellulose and hemicellulose degradation pathways. The process of shotgun sequencing, as seen in Illumina MiSeq technology, required short inputs of DNA that were ~300 base pairs. The length of base pairs required for a full gene is much longer. Thus, the team used another program, MegaHIT, which allowed them to stitch together sequences to get a fragment yield of 1,000 base pairs.
Once the larger fragments were formed the team used the program, Prodigal, to identify the open reading frames (ORFs). Prodigal is responsible for locating ribosome binding sites, through the identification of the start and stop codons. Lastly, jackHMMR was used to find protein domains, with respect to the predicted function.


Wet Lab
The team focused on beta-glucosidase, endoglucanase, and beta-xylanase for the cellulose and hemicellulose degradation pathway. The genes were optimized for expression within E. coli, and once all were modified, the team submitted them for synthesis at Integrated DNA Technologies (IDT). Each were cloned into the pET26b(+) expression vector system. pET26b(+) encodes a pelB sequence at the N-terminus of the protein of interest which is responsible for localization of the protein of interest to the periplasm. From the periplasm, soluble proteins are able to diffuse into the surrounding environment or are secreted.

Once successfully cloned, the team aimed to characterize beta-xylanase. Beta-xylanase, is a key enzyme in the hemicellulose degradation pathway that cleaves xylose dimers to usable xylose monomers. Using a Coomassie Blue stain for total protein expression, the team was able to show that this novel enzyme is able to be expressed in E. coli in the pET26b(+) expression vector system. The team took a step further and attempted to assess the enzymatic activity of this novel beta-xylanase using a modified version of a cellulase/xylanase activity fluorophore assay (Chen et al., 2016). Using xylobiose conjugated to a fluoro-active molecule, we were able to determine the relative activity of our novel beta-xylanase relative to pet26b(+) alone. We discovered that under the conditions we provided the enzyme was not able to function properly (ie. cleave the substrate), possibly due to the differences in oxidation states of the gut and open air or due to pH differences from the protein’s natural environment.

References
Bolger, AM., Lohse, M, and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Int Soc Comp Bi. 30(15): 2114-2120.

Chen, H. M., Armstrong, Z., Hallam, S. J., & Withers, S. G. (2016). Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity. Carbohydr. Res. 421, 33-39.

EMBL-EBI. 2017. HMMER Biosequence analysis using profile hidden Markov Models [internet]. Cambridgeshire (UK): European Molecular Biology Laboratory. Available from: https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer

Houghton, J., Weatherwax, S., & Ferrell, J. (2006). Breaking the biological barriers to cellulosic ethanol: a joint research agenda (No. DOE/SC--0095). EERE Publication and Product Library.

Kopylova, E, Noé L, and Touzet H. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Int Soc Comp Bi. 28(24), 3211-3217.

Sockolosky, J. T., & Szoka, F. C. 2013. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr Purif. 87(2), 129-135.