RobStrasser (Talk | contribs) |
|||
(6 intermediate revisions by 3 users not shown) | |||
Line 84: | Line 84: | ||
<img src="https://static.igem.org/mediawiki/2017/5/5c/T--Munich--Readouts_SplitC_Term.png"> | <img src="https://static.igem.org/mediawiki/2017/5/5c/T--Munich--Readouts_SplitC_Term.png"> | ||
</div></a> | </div></a> | ||
+ | <a href="#-"> | ||
+ | <div class="popup" id="ssDNA_Popup"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/9/90/T--Munich--Description_aeBlue.svg"> | ||
+ | </div></a> | ||
+ | |||
<!-- Head End --> | <!-- Head End --> | ||
<!-- Content Begin --> | <!-- Content Begin --> | ||
Line 113: | Line 118: | ||
<tr><td colspan=6 align=left valign=center> | <tr><td colspan=6 align=left valign=center> | ||
<div style="margin-top: 40px;"><font size=7 color=#51a7f9><b style="color: #51a7f9; margin-top: 40px;">Results: Readouts</b></font></div> | <div style="margin-top: 40px;"><font size=7 color=#51a7f9><b style="color: #51a7f9; margin-top: 40px;">Results: Readouts</b></font></div> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td colspan="6"> | ||
+ | <h3>What worked:</h3> | ||
+ | <ul class="listResults"> | ||
+ | <li>We designed <a class="myLink" href="https://2017.igem.org/Team:Munich/Readouts#fluorescent">fluorescent</a> and <a class="myLink" href="https://2017.igem.org/Team:Munich/Readouts#color">colorimetric</a> readouts, and used a <a class="myLink" href="https://2017.igem.org/Team:Munich/Readouts#aptam">synthetic aptamer</a> as a detection tool. | ||
+ | </li> | ||
+ | </ul> | ||
</td> | </td> | ||
</tr> | </tr> | ||
+ | <tr> | ||
+ | <td colspan="6"> | ||
+ | <h3>What presented issues:</h3> | ||
+ | <ul class="listResults"> | ||
+ | <li>Developing colorimetric read-outs. | ||
+ | </li> | ||
+ | </ul> | ||
+ | </td> | ||
+ | </tr> | ||
<tr> | <tr> | ||
<td colspan = 6 align="left"> | <td colspan = 6 align="left"> | ||
Line 151: | Line 174: | ||
<tr><td colspan=3 align=center valign=center> | <tr><td colspan=3 align=center valign=center> | ||
− | <h3>ssDNA Readout</h3> | + | <h3 id="color">ssDNA Readout</h3> |
<p> | <p> | ||
For this readout, we wanted to link the cleavage of an RNA strand (due to Cas13a activation) to an amplification scheme based on ssDNA. A dimer is formed between a ssDNA sequence and an inhibitor ssRNA sequence. This RNA is composed of three regions binding to the ssDNA separated by polyU loops (<b>Figure 2</b>), so that upon cleavage of the polyU loops by Cas13a, the melting temperature of the dimer is lowered and the cleaved ssRNA falls off. The ssDNA is freed and can be used into an amplification scheme: we envisioned that it would either complete a linear transcription template (known as genelet) that is single-stranded in its promoter region, and activate its transcription<sup><a class="myLink" href="#ref_4">4</a></sup>, or it would bind the PCR DNA template. In both cases, either transcription or PCR would lead to amplification of the signal. A transcription signal could be read with a nucleic acid binding dye, or could be further linked to translation, to create a colored protein read-out such as aeBlue. Using transcription translation as an detection amplification into a colorimetric readout was successfully shown by Pardee <i>et al.</i><sup><a class="myLink" href="#ref_5">5</a></sup>. Similarly, DNA amplification could be signaled with nucleic acid binding dyes and fluorescence could be read with our <a class="myLink" href="https://2017.igem.org/Team:Munich/Hardware/Detector">detector</a>. | For this readout, we wanted to link the cleavage of an RNA strand (due to Cas13a activation) to an amplification scheme based on ssDNA. A dimer is formed between a ssDNA sequence and an inhibitor ssRNA sequence. This RNA is composed of three regions binding to the ssDNA separated by polyU loops (<b>Figure 2</b>), so that upon cleavage of the polyU loops by Cas13a, the melting temperature of the dimer is lowered and the cleaved ssRNA falls off. The ssDNA is freed and can be used into an amplification scheme: we envisioned that it would either complete a linear transcription template (known as genelet) that is single-stranded in its promoter region, and activate its transcription<sup><a class="myLink" href="#ref_4">4</a></sup>, or it would bind the PCR DNA template. In both cases, either transcription or PCR would lead to amplification of the signal. A transcription signal could be read with a nucleic acid binding dye, or could be further linked to translation, to create a colored protein read-out such as aeBlue. Using transcription translation as an detection amplification into a colorimetric readout was successfully shown by Pardee <i>et al.</i><sup><a class="myLink" href="#ref_5">5</a></sup>. Similarly, DNA amplification could be signaled with nucleic acid binding dyes and fluorescence could be read with our <a class="myLink" href="https://2017.igem.org/Team:Munich/Hardware/Detector">detector</a>. | ||
Line 158: | Line 181: | ||
<td colspan=3 align=center valign=right> | <td colspan=3 align=center valign=right> | ||
<div class="captionPicture"> | <div class="captionPicture"> | ||
− | <img width=360 src="https://static.igem.org/mediawiki/2017/9/90/T--Munich--Description_aeBlue.svg"> | + | <a href="#ssDNA_Popup"><img width=360 src="https://static.igem.org/mediawiki/2017/9/90/T--Munich--Description_aeBlue.svg"></a> |
− | <p><b>Figure 2</b>: Working principle of | + | <p><b>Figure 2</b>: Working principle of ssDNA</p> |
</div> | </div> | ||
</td> | </td> | ||
Line 208: | Line 231: | ||
<p> | <p> | ||
− | However, some improvements of the assay should be conducted. First, aggregation should be optimized to avoid any unspecific aggregation while facilitating specific aggregation trough extraction of full-length <i>in-vitro</i>-transcribed RNA. Second, it would be useful to quantify the kinetics of AuNP-resuspension by RNaseA and Cas13a in a plate-reader based assay, | + | However, some improvements of the assay should be conducted. First, aggregation should be optimized to avoid any unspecific aggregation, while facilitating specific aggregation trough extraction of full-length <i>in-vitro</i>-transcribed RNA. Second, it would be useful to quantify the kinetics of AuNP-resuspension by RNaseA and Cas13a in a plate-reader based assay, |
like our experiments using RNaseAlert. Last, to optimize test conditions on the paper platform, a variety of paper materials, coatings and sealing materials should be tested. After all, looking at the exposed position of the Cas13a promiscuous cleavage site and our results on Cas13a and AuNPs, we are confident that an optimized version of this readout will present a functional tool for RNA detection. | like our experiments using RNaseAlert. Last, to optimize test conditions on the paper platform, a variety of paper materials, coatings and sealing materials should be tested. After all, looking at the exposed position of the Cas13a promiscuous cleavage site and our results on Cas13a and AuNPs, we are confident that an optimized version of this readout will present a functional tool for RNA detection. | ||
</p> | </p> |
Latest revision as of 03:54, 2 November 2017
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|