Zhiling Zhou (Talk | contribs) |
Zhiling Zhou (Talk | contribs) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
<html lang="zh-CN"> | <html lang="zh-CN"> | ||
− | + | <head> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | <link href="https://2017.igem.org/Zju/css/bootstrap?action=raw&ctype=text/css" rel="stylesheet" media="screen" /> |
− | + | <link href="https://2017.igem.org/Zju/css/bootstraptheme?action=raw&ctype=text/css" rel="stylesheet" id="bs-theme-stylesheet"> | |
− | </ | + | <link href="https://2017.igem.org/Zju/css/docs/min?action=raw&ctype=text/css" rel="stylesheet" type="text/css"/> |
− | + | <!-- <link href="css/doc-style.css" rel="stylesheet" type="text/css"/> --> | |
− | + | <link href="https://2017.igem.org/Zju/css/doc-style?action=raw&ctype=text/css" rel="stylesheet"> | |
+ | <link href="https://2017.igem.org/Zju/css/responsive/min?action=raw&ctype=text/css" rel="stylesheet"> | ||
+ | <!-- 按钮的字体 --> | ||
+ | <link href='https://2017.igem.org/Team:ZJU-China/cs/font?action=raw&ctype=text/css' rel='stylesheet' type='text/css'> | ||
+ | <!-- 按钮的字体end --> | ||
+ | <script> | ||
+ | var _hmt = _hmt || []; | ||
+ | </script> | ||
+ | <script src="https://static.igem.org/mediawiki/2017/8/85/ZJUChina_js_docsmin.txt?action=raw&ctype=text/javascript"></script> | ||
+ | </head> | ||
<style> | <style> | ||
− | /*Override default CSS*/ | + | /*Override default CSS*/ |
− | #sideMenu, #top_title {display:none;} | + | #sideMenu, #top_title {display:none;} |
− | #content { padding:0px; width:100%; margin-top:-7px; margin-left:0px;background-color: transparent;} | + | #content { padding:0px; width:100%; margin-top:-7px; margin-left:0px;background-color: transparent;} |
− | /* set all basic objects to neutral formatting*/ | + | /* set all basic objects to neutral formatting*/ |
− | html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, font, img, ins, kbd, q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset, form, label, legend, caption { | + | html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, font, img, ins, kbd, q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset, form, label, legend, caption { |
− | + | margin: 0; | |
− | + | padding: 0; | |
− | + | border: 0; | |
− | + | outline: 0; | |
− | + | font-size: 100%; | |
− | + | vertical-align: baseline; | |
− | + | background: transparent; | |
− | } | + | } |
− | #globalWrapper { | + | #globalWrapper { |
− | + | margin: 0; | |
− | + | padding: 0; | |
− | + | border: 0; | |
− | + | outline: 0; | |
− | + | font-size: 100%; | |
− | + | vertical-align: baseline; | |
− | + | background: transparent; | |
− | } | + | } |
− | /* set page to fill window*/ | + | /* set page to fill window*/ |
− | html{ | + | html{ |
− | + | height: 100%; | |
− | } | + | } |
− | body { | + | body { |
− | + | min-height: 100%; | |
− | + | background-color: #FFFFFF; | |
− | } | + | } |
− | #content_wrapper { | + | #content_wrapper { |
− | + | position: relative; | |
− | + | top: 0px; | |
− | + | left: 0px; | |
− | + | margin: 0px; | |
− | + | width: 100%; | |
− | + | height: 100%; | |
− | + | text-align:center; | |
− | + | background-color: #FFFFFF; | |
− | } | + | } |
− | #content_wrapper p { | + | #content_wrapper p { |
− | + | font-family: 'Yanone Kaffeesatz',Tahoma, Geneva, sans-serif; | |
− | } | + | } |
− | #content_wrapper a { | + | #content_wrapper a { |
− | + | color:#004789; | |
− | } | + | } |
− | #footer { | + | #footer { |
− | + | position:absolute; | |
− | + | bottom: 0px; | |
− | + | left: 0px; | |
− | + | width: 100%; | |
− | + | margin-top: 0px; | |
− | + | margin-bottom: 20px; | |
− | + | background-color: #FFFFFF; | |
− | + | text-align: center; | |
− | } | + | } |
− | .center { | + | .center { |
− | + | width: 60%; | |
− | + | margin-top: 16px; | |
− | + | min-width: 500px; | |
− | + | padding-bottom:32px; | |
− | + | display: inline-block; | |
− | } | + | } |
− | .TextContent { | + | .TextContent { |
− | + | text-align: left; | |
− | + | vertical-align: baseline; | |
− | + | font-size: 0.875em; | |
− | + | font-family:'Yanone Kaffeesatz', verdana, sans-serif; | |
− | } | + | } |
− | .TextContent h1{ | + | .TextContent h1{ |
− | + | text-align: center; | |
− | + | font-size: 1.5rem; | |
− | + | margin-bottom: 1em; | |
− | + | margin-top: 0.2em; | |
− | + | color: #3399ff; | |
− | + | font-family:'Yanone Kaffeesatz', verdana, sans-serif; | |
− | } | + | } |
− | .TextContent h2{ | + | .TextContent h2{ |
− | + | line-height: 1.6; | |
− | + | margin-bottom: 0em; | |
− | + | margin-top: 1em; | |
− | + | text-align: left; | |
− | + | font-family:'Yanone Kaffeesatz', verdana, sans-serif; | |
− | } | + | } |
− | .TextContent p{ | + | .TextContent p{ |
− | + | margin-bottom: 1.2em; | |
− | + | font-family:'Yanone Kaffeesatz', verdana, sans-serif; | |
− | } | + | } |
− | .Page_Wide { | + | .Page_Wide { |
− | + | width:100%; | |
− | } | + | } |
− | .Quarter_Image { | + | .Quarter_Image { |
− | + | width:25%; | |
− | + | max-height:250px; | |
− | + | float:left; | |
− | } | + | } |
− | .Quarter_Image img { | + | .Quarter_Image img { |
− | + | display:block; | |
− | + | margin:auto; | |
− | + | max-height: 250px; | |
− | + | width: auto; | |
− | } | + | } |
− | .SocialMediaIconWrapper { | + | .SocialMediaIconWrapper { |
− | + | width:100%; | |
− | } | + | } |
− | .SocialMediaIcon { | + | .SocialMediaIcon { |
− | + | width:4%; | |
− | + | height:auto; | |
− | + | margin-left:20px; | |
− | + | display: inline-block; | |
− | + | float:left; | |
− | } | + | } |
− | .SocialMediaIcon img{ | + | .SocialMediaIcon img{ |
− | + | max-width:100%; | |
− | + | height:auto | |
− | } | + | } |
− | .TeamImage { | + | .TeamImage { |
− | + | width:100%; | |
− | } | + | } |
− | .TeamImage img { | + | .TeamImage img { |
− | + | max-width:100%; | |
− | + | height:auto | |
− | } | + | } |
− | .sponsors { | + | .sponsors { |
− | + | width: 100%; | |
− | } | + | } |
− | .sponsor_row { | + | .sponsor_row { |
− | + | width: 100%; | |
− | } | + | } |
− | .sponsor_img { | + | .sponsor_img { |
− | + | width: 16.6666667%; | |
− | + | float:left; | |
− | } | + | } |
− | .sponsor_img img{ | + | .sponsor_img img{ |
− | + | max-width:100%; | |
− | + | height:auto | |
− | } | + | } |
− | .clear { | + | .clear { |
− | + | clear:both; | |
− | } | + | } |
− | .clear.extra_space { | + | .clear.extra_space { |
− | + | height: 20px; | |
− | } | + | } |
− | .line_divider { | + | .line_divider { |
− | + | border-top: 1px solid #d3d3d3; | |
− | + | width: 98%; | |
− | + | margin: auto; | |
− | } | + | } |
− | .copyright{ | + | .copyright{ |
− | + | color: #888888; | |
− | + | font-size: 13px; | |
− | + | text-align: center !important; | |
− | } | + | } |
− | .copyright a{ | + | .copyright a{ |
− | + | color: #d2ebe3; | |
− | + | border-bottom: dotted 1px #a5d8c7; | |
− | } | + | } |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | /*文中自定义*/ | + | /*文中自定义*/ |
− | .CuteButton:active { | + | .CuteButton:active { |
− | + | color:white !important; | |
− | + | -webkit-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | -moz-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | position: relative; | |
− | } | + | top: 6px; |
+ | } | ||
− | . | + | .CuteButton:visited { |
− | + | color:white !important; | |
− | + | -webkit-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | -moz-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | } | + | position: relative; |
+ | top: 6px; | ||
+ | } | ||
− | . | + | .YellowCB { |
− | + | background-color: rgba(254,196,62,1); | |
− | + | -webkit-box-shadow: 0px 9px 0px rgba(245,253,202,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | -moz-box-shadow: 0px 9px 0px rgba(245,253,202,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | box-shadow: 0px 9px 0px rgba(245,253,202,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | } | + | } |
− | . | + | .GreenCB { |
− | + | background-color: rgba(25,148,117,1); | |
− | + | -webkit-box-shadow: 0px 9px 0px rgba(4,77,34,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | -moz-box-shadow: 0px 9px 0px rgba(4,77,34,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | box-shadow: 0px 9px 0px rgba(4,77,34,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | } | + | } |
+ | .SmallCB { | ||
+ | font-size: 1.5em; | ||
+ | margin-left: 2px; | ||
+ | padding: 2px 10px ; | ||
+ | width: 100px; | ||
+ | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | . | + | .ArticleHead{ |
− | + | font-family: 'Tempus Sans ITC',georgia !important; | |
− | + | font-size: 40px !important; | |
− | + | font-weight: 800 !important; | |
− | + | color: #56A36C !important; | |
− | } | + | text-align: center !important; |
+ | margin-bottom: 0 !important; | ||
+ | margin-top: .6em !important; | ||
+ | } | ||
+ | .H3Head{ | ||
+ | font-family: 'Tempus Sans ITC',georgia !important; | ||
+ | color: #FEC43E !important; | ||
+ | font-size: 25px !important; | ||
+ | font-weight: 400 !important; | ||
+ | text-align: left !important; | ||
+ | margin-bottom: 0 !important; | ||
+ | margin-top:.6em !important; | ||
+ | } | ||
− | . | + | .PP{ |
− | + | font-family:Tahoma, Geneva, sans-serif !important; | |
− | } | + | font-size: 20px !important; |
+ | font-weight: 100 !important; | ||
+ | text-align: left !important; | ||
+ | margin-bottom: 20px; | ||
+ | } | ||
− | |||
− | |||
− | |||
− | . | + | .Retract{ |
− | + | padding-left: 50px; | |
− | } | + | } |
− | . | + | .GreenAH{ |
− | + | color: #56A36C; | |
− | + | } | |
− | + | ||
− | + | ||
− | + | ||
− | } | + | |
− | . | + | .YellowAH{ |
− | { | + | color: #FEC43E; |
− | + | } | |
− | } | + | |
− | . | + | .contentLi{ |
− | { | + | margin:0; |
− | + | font-size:17px; | |
− | + | line-height: 27px; | |
− | } | + | padding-bottom: 20px; |
+ | color: #111111; | ||
+ | } | ||
− | + | .grayTable | |
− | + | { | |
− | + | background-color: #979797; | |
− | + | } | |
− | + | ||
− | } | + | |
− | + | .yellowTable | |
− | + | { | |
− | + | background-color: #CD9B1D; | |
− | + | color: #000; | |
− | + | } | |
− | } | + | |
− | + | h2{ | |
− | + | font-family: 'Tempus Sans ITC'; | |
− | + | font-weight: 500; | |
− | + | font-size: 35px; | |
− | + | text-align: left; | |
− | } | + | } |
− | + | h3{ | |
− | + | font-family: 'Tempus Sans ITC'; | |
− | + | font-weight: 500; | |
− | + | font-size: 32px; | |
− | + | text-align: left; | |
− | } | + | } |
− | + | h4{ | |
− | + | font-family: 'Tempus Sans ITC'; | |
− | + | font-weight: 500; | |
− | + | font-size: 28px; | |
− | + | text-align: left; | |
− | + | } | |
− | } | + | |
− | + | h5{ | |
− | { | + | font-family: 'Tempus Sans ITC'; |
− | + | font-weight: 500; | |
− | + | font-size: 25px; | |
− | + | text-align: left; | |
− | + | } | |
− | } | + | |
+ | p{ | ||
+ | margin:0; | ||
+ | font-size:17px; | ||
+ | line-height: 30px; | ||
+ | /*padding-bottom: 20px;*/ | ||
+ | color: #111111; | ||
+ | } | ||
− | . | + | .bs-docs-sidenav |
− | font-family:Tahoma, Geneva, sans-serif !important; | + | { |
− | + | font-family:Tahoma, Geneva, sans-serif !important; | |
− | + | font-size: 20px !important; | |
− | + | font-weight: 100 !important; | |
− | } | + | text-align: left !important; |
+ | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | . | + | .textli li{ |
− | + | font-family:Tahoma, Geneva, sans-serif !important; | |
− | + | font-size: 20px !important; | |
− | + | font-weight: 100 !important; | |
− | + | text-align: left !important; | |
− | } | + | } |
+ | .textimg | ||
+ | { | ||
+ | width:60% !important; | ||
+ | } | ||
− | + | .ref | |
− | + | { | |
− | . | + | font-size: 16px !important; |
− | + | line-height:22px !important; | |
− | + | margin-bottom: 5px !important; | |
− | + | color: #353535; | |
− | + | } | |
− | + | /*文中自定义*/ | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | } | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | /*文中自定义*/ | + | |
</style> | </style> | ||
− | + | <body id="page-top" data-spy="scroll" data-target=".navbar-fixed-top"> | |
− | + | <div class="page-loader"></div> | |
− | + | <!-- Docs master nav --> | |
− | + | <!-- <h1><a class="navbar-brand" href="index.html">MuMei Lab</a></h1> --> | |
− | + | <div class="container"> | |
− | + | ||
<!-- header --> | <!-- header --> | ||
<div class="header-w3layouts"> | <div class="header-w3layouts"> | ||
Line 467: | Line 431: | ||
<li><a href="https://2017.igem.org/Team:ZJU-China/Project/conclusion">Conclusions</a></li> | <li><a href="https://2017.igem.org/Team:ZJU-China/Project/conclusion">Conclusions</a></li> | ||
<li><a href="https://2017.igem.org/Team:ZJU-China/Notebook">Notebook</a></li> | <li><a href="https://2017.igem.org/Team:ZJU-China/Notebook">Notebook</a></li> | ||
+ | <li><a href="https://2017.igem.org/Team:ZJU-China/Protocols">Protocols</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 537: | Line 502: | ||
</div> | </div> | ||
− | <p></p> | + | <p>"<br></p> |
− | <div style="margin-top:0;padding-top:0"> | + | <!--<div style="margin-top:0;padding-top:0">--> |
− | + | <!--<img id="partsPage" src="https://static.igem.org/mediawiki/2017/b/be/ZJUChina_interlab_banner.jpg" width="100%">--> | |
− | + | <!--<!– <img src="images/HP_temp/banner.jpg" width="100%"> –>--> | |
− | </div> | + | <!--</div>--> |
+ | |||
+ | |||
<div style="width: 100%" class="container zjuContent"> | <div style="width: 100%" class="container zjuContent"> | ||
− | + | <div class="col-md-3"></div> | |
<div class="col-md-9" role="main"> | <div class="col-md-9" role="main"> | ||
− | + | <p class="bs-docs-section"> | |
+ | <h1 id="voc" class="page-header ArticleHead GreenAH">VOC sensor</h1> | ||
+ | <h2 id="overview" class="H2Head">Overview</h2> | ||
− | + | <p class="PP">In our project, we are exploring a new way to sense the health condition of crops which will further send this information (healthy or not) to both human and our <em>T.atroviride</em>. In this way, we can take actions on time and achieve the goal of prevention some phytopathogens in advance. Meanwhile, this method should be conveniently used in variety range of plants.</p> | |
+ | <p class="PP">We finally build up an e-nose (electronic nose) system to sense the VOC (volatile organic compounds) emitted by the plants. Afterwards, using machine learning method, we achieved a high accuracy rate, which is over 85%, when sensing the tobaccos infected by <em>P.nicotianae</em>. That is to say: our device successfully distinguishes whether the tobaccos are ill by "smelling them".</p> | ||
− | + | <h2 id="background" class="H2Head">Background</h2> | |
− | + | <p class="PP">Plants will release a variety of volatile organic compounds (VOC) to resist some infected phytopathogens, which can lead to a change of VOC composition around the plants[1]. Firstly, we verified the VOC differences between healthy tobaccos and tobaccos infected by <em>P.nicotianae</em> by GC-MS.</p> | |
− | + | <div class="imgdiv"><img class="textimg" style="width: 90% !important;" src="https://static.igem.org/mediawiki/2017/8/8e/ZJU_China_VOCsensor_new1.png"></div> | |
− | + | <p class="capture">Fig.1 GC-MS analysis of VOCs emitted by healthy tobaccos and tobaccos infected by <em>P.nicotianae</em></p> | |
+ | <p class="capture">(Thanks Hunan Tobaccos Bureau for providing this data).</p> | ||
− | + | <p class="PP">We decide to use ten highly sensitive CMOS(Complementary Metal Oxide Semiconductor) gas detector to catch the VOC information, each detector is sensitive to one kind or type of VOCs. E-nose can’t sense a specific VOC like mass spectrometers did. instead, it catches the overall characteristics of VOCs as "fingerprint".</p> | |
− | + | ||
− | + | <div class="imgdiv"><img class="textimg" src="https://static.igem.org/mediawiki/2017/1/1c/ZJU_China_VOCsensor_2.jpg"></div> | |
+ | <p class="capture">Fig.2 A photo of our gas sensor chamber.</p> | ||
− | + | <p class="PP">Our device is controlled by Arduino Single Chip Microcomputer(SCM) in order to achieve automatic measurement, and we standardize the testing steps to ensure the data between every groups is comparable.</p> | |
− | + | <!--<div class="imgdiv col-md-6 col-sm-6"><img style="height: 330px !important; width: auto !important;" class="textimg" src="https://static.igem.org/mediawiki/2017/9/9f/ZJU_China_VOCSensor_s1.jpg"></div>--> | |
+ | <!--<div class="imgdiv col-md-6 col-sm-6"><img style="height: 330px !important; width: auto !important;" class="textimg" src="https://static.igem.org/mediawiki/2017/b/bc/ZJU_China_VOCSensor_s2.jpg"></div>--> | ||
+ | <div class="imgdiv col-md-4 col-sm-8"><img class="textimg" style="height: 310px !important; width: auto !important;" src="https://static.igem.org/mediawiki/2017/e/ec/ZJU_China_VOCsensor_3.png"></div> | ||
+ | <div class="imgdiv col-md-8 col-sm-8"><img class="textimg" style="height: 320px !important; width: auto !important;" src="https://static.igem.org/mediawiki/2017/9/90/ZJU_China_VOCsensor_30.png"></div> | ||
+ | <p class="capture">Fig.3 The response curve of gas sensors (from ill tobacco)and the stability curve (40min in air)</p> | ||
− | + | <p class="PP">We use high purity air to blow out the gas out of the box into the gas sensor chamber.</p> | |
− | + | <div class="imgdiv"><img class="textimg" style="width: 80% !important;" src="https://static.igem.org/mediawiki/2017/d/d9/ZJU_China_ZC3in1.jpg"></div> | |
+ | <p class="capture">Fig.4 An illustration of our standardized measuring steps</p> | ||
− | + | <p class="PP"><a class="cite" href="https://2017.igem.org/Team:ZJU-China/Hardware/Device">Click here</a> to see more information about our device.</p> | |
− | + | <p class="PP">We build median filter algorithm in SCM to remove some outliers. Then, we preprocess the raw data after getting them: First, we identify and remove the base line value; Then, we read the response value on 1min, 2 min, the integral average value and maximum value of the response curve.</p> | |
− | + | <p class="PP">We have measured 17 groups of healthy tobaccos and 18 groups of infected ones. Click to download our <a class="cite" href="https://static.igem.org/mediawiki/2017/2/25/ZJU_China_Hardware_rawdata.xlsx">raw data</a> and <a class="cite" href="https://static.igem.org/mediawiki/2017/f/fb/ZJU_China_Hardware_preprocess.xlsx">preprocessed data</a>.</p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <div class="imgdiv"><img class="textimg" style="width: 80% !important;" src="https://static.igem.org/mediawiki/2017/d/de/ZJU_China_VOCsensor_5.png"></div> | |
− | + | <p class="capture">Fig.5 The integral average value of 35 response curve.</p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <p class="PP">After preprocessing the data, we apply some algorithms to do the classification work. We employ Decision Tree, Multi-Layer Perception algorithm, and Leaner Model. Finally, we achieve more than 85% accuracy rate of distinguishing whether the tobaccos are infected by <em>P.nicotianae</em>.</p> | |
− | + | <p class="PP">Moreover, based on the result of the modeling, 4 CMOS detectors are enough to make a judgement for the health condition of tobaccos, which means we can further reduce the cost of our device.</p> | |
− | + | <p class="PP"><a class="cite" href="https://2017.igem.org/Team:ZJU-China/Model">Click here</a> to see the details of our modeling process.</p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | <h2 id="conclusion" class="H2Head">Conclusions</h2> | |
− | + | <p class="PP">Our method achieves more than 85% accuracy rate on distinguish the health state of tobaccos, and we find we only need four detectors for our devices to make such judgments. Moreover, the VOC data can be sent to PC port, we also build a web app to achieve real time monitoring. In the future, we plan to make the web app possible to show the healthy condition of plants in real time.</p> | |
− | + | <p class="PP">On the other hand, the sensitivity of our device is still limited when facing real world conditions. It is hard to fit different conditions in different field. Therefore, we come up with a plan to solve this problem, <a class="cite" href="https://2017.igem.org/Team:ZJU-China/Hardware/Improvements">Click here</a> to see our improvements.</p> | |
− | + | <br/><br/> | |
− | + | ||
− | + | ||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <!-- 右侧监听开始 --> | |
− | + | <div class="col-md-3 disappear-on-top" role="complementary"> | |
− | + | <nav style="position: fixed; top: 100px ; left:50px;" class="bs-docs-sidebar hidden-print hidden-xs hidden-sm"> | |
− | + | <ul class="nav bs-docs-sidenav shorterli"> | |
− | + | ||
− | + | ||
− | + | <li><a href="#overview">Overview</a></li> | |
− | + | <li><a href="#background">Background</a></li> | |
− | + | <!--<li><a href="#exp">Experimental Design</a></li>--> | |
− | + | <!--<li><a href="#fullauto">Sample and Test</a></li>--> | |
− | + | <li><a href="#conclusion">Conclusions</a></li> | |
− | + | <!--<li><a href="#ref">Reference</a></li>--> | |
− | + | </ul> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <a class="back-to-top" href="#top"> | |
− | + | <!-- <i class="fa fa-arrow-up nav_icon"></i> --> | |
− | + | <img style="width: 50px;" src="https://static.igem.org/mediawiki/2017/d/da/ZJU_China_UP.png"> | |
− | + | </a> | |
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | </nav> | |
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
<!-- 右侧监听结束 --> | <!-- 右侧监听结束 --> | ||
<!-- footer开始 --> | <!-- footer开始 --> | ||
<div class="footer" style="background-color: #000000"> | <div class="footer" style="background-color: #000000"> | ||
− | + | <div class="copyright container text-center"> | |
− | + | <p><br></p> | |
− | + | <p class="copyright">Copyright © 2017 ZJU-IGEM | <a href="http://www.zju.edu.cn/">Zhejiang University</a> |</p> | |
− | + | <p><br></p> | |
− | + | </div> | |
</div> | </div> | ||
<!-- footer结束 --> | <!-- footer结束 --> | ||
Line 723: | Line 600: | ||
<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script> | <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script> | ||
− | + | <!--script src="js/bootstrap.min.js"></script--> | |
− | + | <script src="https://static.igem.org/mediawiki/2017/8/85/ZJUChina_js_docsmin.txt"></script> | |
− | + | <!--script src="js/button.js"></script--> | |
− | + | <script src="https://static.igem.org/mediawiki/2017/2/22/ZJUChina_bootstrap.min.txt"></script> | |
− | + | <script src="https://static.igem.org/mediawiki/2017/3/32/ZJUChina_docs.min.txt"></script> | |
− | + | <script src="https://static.igem.org/mediawiki/2017/e/e0/ZJUChina_button.txt"></script> | |
− | + | <script src="https://2017.igem.org/Team:ZJU-China/js/scrollingnavnonPic?action=raw&ctype=text/javascript"></script> | |
− | + | <!--<script src="https://static.igem.org/mediawiki/2017/9/92/ZJUChina_scrolling-nav.txt"></script> --> | |
− | + | <script src="https://static.igem.org/mediawiki/2017/c/c0/ZJUChina_txtSmoothScroll.min.txt"></script> | |
− | + | </body> | |
</html> | </html> |
Latest revision as of 03:55, 2 November 2017
"
VOC sensor
Overview
In our project, we are exploring a new way to sense the health condition of crops which will further send this information (healthy or not) to both human and our T.atroviride. In this way, we can take actions on time and achieve the goal of prevention some phytopathogens in advance. Meanwhile, this method should be conveniently used in variety range of plants.
We finally build up an e-nose (electronic nose) system to sense the VOC (volatile organic compounds) emitted by the plants. Afterwards, using machine learning method, we achieved a high accuracy rate, which is over 85%, when sensing the tobaccos infected by P.nicotianae. That is to say: our device successfully distinguishes whether the tobaccos are ill by "smelling them".
Background
Plants will release a variety of volatile organic compounds (VOC) to resist some infected phytopathogens, which can lead to a change of VOC composition around the plants[1]. Firstly, we verified the VOC differences between healthy tobaccos and tobaccos infected by P.nicotianae by GC-MS.
Fig.1 GC-MS analysis of VOCs emitted by healthy tobaccos and tobaccos infected by P.nicotianae
(Thanks Hunan Tobaccos Bureau for providing this data).
We decide to use ten highly sensitive CMOS(Complementary Metal Oxide Semiconductor) gas detector to catch the VOC information, each detector is sensitive to one kind or type of VOCs. E-nose can’t sense a specific VOC like mass spectrometers did. instead, it catches the overall characteristics of VOCs as "fingerprint".
Fig.2 A photo of our gas sensor chamber.
Our device is controlled by Arduino Single Chip Microcomputer(SCM) in order to achieve automatic measurement, and we standardize the testing steps to ensure the data between every groups is comparable.
Fig.3 The response curve of gas sensors (from ill tobacco)and the stability curve (40min in air)
We use high purity air to blow out the gas out of the box into the gas sensor chamber.
Fig.4 An illustration of our standardized measuring steps
Click here to see more information about our device.
We build median filter algorithm in SCM to remove some outliers. Then, we preprocess the raw data after getting them: First, we identify and remove the base line value; Then, we read the response value on 1min, 2 min, the integral average value and maximum value of the response curve.
We have measured 17 groups of healthy tobaccos and 18 groups of infected ones. Click to download our raw data and preprocessed data.
Fig.5 The integral average value of 35 response curve.
After preprocessing the data, we apply some algorithms to do the classification work. We employ Decision Tree, Multi-Layer Perception algorithm, and Leaner Model. Finally, we achieve more than 85% accuracy rate of distinguishing whether the tobaccos are infected by P.nicotianae.
Moreover, based on the result of the modeling, 4 CMOS detectors are enough to make a judgement for the health condition of tobaccos, which means we can further reduce the cost of our device.
Click here to see the details of our modeling process.
Conclusions
Our method achieves more than 85% accuracy rate on distinguish the health state of tobaccos, and we find we only need four detectors for our devices to make such judgments. Moreover, the VOC data can be sent to PC port, we also build a web app to achieve real time monitoring. In the future, we plan to make the web app possible to show the healthy condition of plants in real time.
On the other hand, the sensitivity of our device is still limited when facing real world conditions. It is hard to fit different conditions in different field. Therefore, we come up with a plan to solve this problem, Click here to see our improvements.