(27 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> | <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> | ||
<meta http-equiv="x-ua-compatible" content="ie=edge"> | <meta http-equiv="x-ua-compatible" content="ie=edge"> | ||
− | |||
− | |||
<link href="https://2017.igem.org/Template:SJTU-BioX-Shanghai/CSS/bootstrap?action=raw&ctype=text/css" rel="stylesheet"> | <link href="https://2017.igem.org/Template:SJTU-BioX-Shanghai/CSS/bootstrap?action=raw&ctype=text/css" rel="stylesheet"> | ||
<link href="https://2017.igem.org/Template:SJTU-BioX-Shanghai/CSS/ripple?action=raw&ctype=text/css" rel="stylesheet"> | <link href="https://2017.igem.org/Template:SJTU-BioX-Shanghai/CSS/ripple?action=raw&ctype=text/css" rel="stylesheet"> | ||
Line 18: | Line 16: | ||
<style> | <style> | ||
.full-bg.full-bg-0 { | .full-bg.full-bg-0 { | ||
− | background-image: url("https://static.igem.org/mediawiki/2017/ | + | background-image: url("https://static.igem.org/mediawiki/2017/8/86/T--SJTU-BioX-Shanghai--17002.jpeg"); |
} | } | ||
− | @media only screen and (min-width: | + | @media only screen and (min-width: 576px) { |
.full-bg.full-bg-0 { | .full-bg.full-bg-0 { | ||
− | background-image: url("https://static.igem.org/mediawiki/2017/ | + | background-image: url("https://static.igem.org/mediawiki/2017/3/32/T--SJTU-BioX-Shanghai--17002-hi.jpeg"); |
} | } | ||
} | } | ||
.nav2-brand { | .nav2-brand { | ||
− | width: | + | width: 7em; |
} | } | ||
</style> | </style> | ||
Line 38: | Line 36: | ||
<nav class="navbar navbar1 navbar-expand-lg navbar-dark"> | <nav class="navbar navbar1 navbar-expand-lg navbar-dark"> | ||
<div class="container"> | <div class="container"> | ||
− | <a class="navbar-brand" href=" | + | <a class="navbar-brand" href="https://2017.igem.org/Team:SJTU-BioX-Shanghai"><img src="https://static.igem.org/mediawiki/2017/b/be/T--SJTU-BioX-Shanghai--logo.png" height="55" /></a> |
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav1" aria-controls="navbarNav1" aria-expanded="false" aria-label="Toggle navigation"> | <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav1" aria-controls="navbarNav1" aria-expanded="false" aria-label="Toggle navigation"> | ||
<div class="hamburger" id="ham1"> | <div class="hamburger" id="ham1"> | ||
Line 51: | Line 49: | ||
<li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Notebook" class="nav-link">Wet Lab</a></li> | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Notebook" class="nav-link">Wet Lab</a></li> | ||
<li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Loader" class="nav-link">Device</a></li> | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Loader" class="nav-link">Device</a></li> | ||
− | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/ | + | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Model" class="nav-link">Model</a></li> |
− | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/ | + | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/HP" class="nav-link">Human Practice</a></li> |
<li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Team" class="nav-link">Team</a></li> | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Team" class="nav-link">Team</a></li> | ||
</ul> | </ul> | ||
<ul class="navbar-nav ml-auto"> | <ul class="navbar-nav ml-auto"> | ||
− | <li class="nav-item"><a href="" class="nav-link jtzw">简体中文</a></li> | + | <li class="nav-item"><a href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Description-cn" class="nav-link jtzw">简体中文</a></li> |
</ul> | </ul> | ||
</div> | </div> | ||
Line 94: | Line 92: | ||
</div> | </div> | ||
− | <div class="big-head h1-my-responsive"> <img src="https://static.igem.org/mediawiki/2017/ | + | <div class="big-head h1-my-responsive"> <img src="https://static.igem.org/mediawiki/2017/3/3e/T--SJTU-BioX-Shanghai--17y08.png" class="img-fluid">Description</div> |
<div class="container maink"> | <div class="container maink"> | ||
<div class="container maintext"> | <div class="container maintext"> | ||
Line 103: | Line 101: | ||
<li class="nav-item"> | <li class="nav-item"> | ||
− | <a class="nav-link" href="#section1"> | + | <a class="nav-link" href="#section1">STAR</a> |
</li> | </li> | ||
<li class="nav-item"> | <li class="nav-item"> | ||
− | <a class="nav-link" href="#section2"> | + | <a class="nav-link" href="#section2">Multi-factor</a> |
</li> | </li> | ||
<li class="nav-item"> | <li class="nav-item"> | ||
− | <a class="nav-link" href="#section3"> | + | <a class="nav-link" href="#section3">Chromoprotein</a> |
</li> | </li> | ||
<li class="nav-item"> | <li class="nav-item"> | ||
− | <a class="nav-link" href="#section4"> | + | <a class="nav-link" href="#section4">small CAT</a> |
− | + | ||
− | + | ||
− | + | ||
</li> | </li> | ||
</nav> | </nav> | ||
Line 121: | Line 116: | ||
</div> | </div> | ||
<div class="col-12 col-lg-9"> | <div class="col-12 col-lg-9"> | ||
− | <div class="my-title h5-my-responsive" id="section1"> | + | <div class="my-title h5-my-responsive" id="section1">STAR</div> |
− | <p> | + | <p><span class="toolt" data-toggle="tooltip" data-placement="bottom" title="Small Transcriptional-Activating RNA">STAR</span> is a new technology that can be used for implementing RNA logic in bacterial cells. STAR system consists of two short RNA segments, namely Target and Antisense respectively. The hairpin structure in Target acts like terminator or attenuator in the gene circuit, which is often inserted in the upstream of the open reading frame to block the expression. Antisense is a short RNA which is strictly complementary strand of part of Target. As soon as the strong combination between Target and Antisense occurs, the hairpin structure in Target will be altered, which further activates the expression of downstream proteins.</p> |
− | + | <div class="figure-intro"> | |
− | <div class=" | + | <img src="https://static.igem.org/mediawiki/2017/1/13/T--SJTU-BioX-Shanghai--17z05.png" class="img-fluid"> |
− | + | </div> | |
− | + | <div class="my-title h5-my-responsive" id="section2">Multi-factor</div> | |
− | <div class="my-title h5-my-responsive" id=" | + | <p>STAR is an effective RNA logic technology. It acts like a bridge to connect sensors such environment-sensitive promoters, with reporters such as fluorescent proteins. Considering its strong logical feature, we determine to use STAR to construct a multi-factor bio-detector. There is a series of STARs which have been rationally designed and well characterized. Based on previous work, we choose one existing STAR (denoted as STAR1) which possesses the highest activation efficiency as one of our regulators, and design a new one (denoted as STAR3) by modifying an old one (denoted as STAR2). Finally, we integrate STAR1, STAR3, sensors and reporters to create the multi-factor bio-detector.</p> |
− | <p> | + | <div class="figure-intro"> |
− | < | + | <img src="https://static.igem.org/mediawiki/2017/f/f6/T--SJTU-BioX-Shanghai--17z06.png" class="img-fluid"> |
− | <div class="my-title h5-my-responsive" id=" | + | </div> |
− | <p> | + | <div class="my-title h5-my-responsive" id="section3">Chromoprotein</div> |
− | < | + | <p>In order to construct a visible detection system, we determine to use chromoprotein as our reporter. Chromoprotein is a kind of protein which contains the structure of pigment so it can display relevant color under light. We choose it as the reporter for two main reasons: easy-to-detect and variability. The property of easy identification by naked eyes makes it a more convenient tool comparing to fluorescent proteins which require specific excitation light. Also, with the same feature as pigment, mixing two different chromoproteins can form a third color under the color mixing theory.</p> |
− | <div class="my-title h5-my-responsive" id=" | + | <div class="figure-intro"> |
− | <p> | + | <img src="https://static.igem.org/mediawiki/2017/9/91/T--SJTU-BioX-Shanghai--17z02.png" class="img-fluid"> |
− | < | + | </div> |
+ | <div class="my-title h5-my-responsive" id="section4">Small CAT</div> | ||
+ | <p>Chromoproteins have been wildly used these years, but we haven't found any effective and convenient way to measure their concentration. So, we develop a new method to achieve the concentration measurement by taking pictures and analyzing the colorimetric values in mobile device. This detection system is called small Chromoprotein Analyze Toolbox, short for smallCAT, which can also identify any mixed color by generating a color chart or colorimetric card. A customized plastic box is used for controlling environmental impacts and the analyze program can be installed as an APP in mobile device or run in MATLAB in desktops.</p> | ||
+ | <div class="figure-intro"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/7/72/T--SJTU-BioX-Shanghai--17z01.png" class="img-fluid"> | ||
+ | </div> | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
</div> | </div> | ||
Line 174: | Line 171: | ||
<div class="footer-L"> | <div class="footer-L"> | ||
− | <a class="footer-text" href=" | + | <a class="footer-text" href="https://2017.igem.org/Team:SJTU-BioX-Shanghai"> |
<img src="https://static.igem.org/mediawiki/2017/f/f5/T--SJTU-BioX-Shanghai--right.png" class="img-fluid"> | <img src="https://static.igem.org/mediawiki/2017/f/f5/T--SJTU-BioX-Shanghai--right.png" class="img-fluid"> | ||
− | <span class="direction"> | + | <span class="direction">Previous</span> |
<div class="title"> | <div class="title"> | ||
− | + | Home Page | |
</div> | </div> | ||
</a> | </a> | ||
Line 191: | Line 188: | ||
<div class="footer-R"> | <div class="footer-R"> | ||
− | <a class="footer-text" href=" | + | <a class="footer-text" href="https://2017.igem.org/Team:SJTU-BioX-Shanghai/Design"> |
<img src="https://static.igem.org/mediawiki/2017/f/f5/T--SJTU-BioX-Shanghai--right.png" class="img-fluid"> | <img src="https://static.igem.org/mediawiki/2017/f/f5/T--SJTU-BioX-Shanghai--right.png" class="img-fluid"> | ||
− | <span class="direction"> | + | <span class="direction">Project</span> |
<div> | <div> | ||
− | + | Design | |
</div> | </div> | ||
</a> | </a> | ||
Line 205: | Line 202: | ||
</div> | </div> | ||
− | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/jquery? | + | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/jquery?action=raw&ctype=text/javascript"></script> |
− | action=raw&ctype=text/javascript"></script> | + | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/script?action=raw&ctype=text/javascript"></script> |
− | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/popper? | + | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/popper?action=raw&ctype=text/javascript"></script> |
− | + | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/ripple?action=raw&ctype=text/javascript"></script> | |
− | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/ripple? | + | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/bootstrap?action=raw&ctype=text/javascript"></script> |
− | + | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/nav?action=raw&ctype=text/javascript"></script> | |
− | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/bootstrap? | + | |
− | + | ||
− | <script src="https://2017.igem.org/Template:SJTU-BioX-Shanghai/Javascript/ | + | |
− | + | ||
</div> | </div> |
Latest revision as of 02:36, 18 November 2017
STAR is a new technology that can be used for implementing RNA logic in bacterial cells. STAR system consists of two short RNA segments, namely Target and Antisense respectively. The hairpin structure in Target acts like terminator or attenuator in the gene circuit, which is often inserted in the upstream of the open reading frame to block the expression. Antisense is a short RNA which is strictly complementary strand of part of Target. As soon as the strong combination between Target and Antisense occurs, the hairpin structure in Target will be altered, which further activates the expression of downstream proteins.
STAR is an effective RNA logic technology. It acts like a bridge to connect sensors such environment-sensitive promoters, with reporters such as fluorescent proteins. Considering its strong logical feature, we determine to use STAR to construct a multi-factor bio-detector. There is a series of STARs which have been rationally designed and well characterized. Based on previous work, we choose one existing STAR (denoted as STAR1) which possesses the highest activation efficiency as one of our regulators, and design a new one (denoted as STAR3) by modifying an old one (denoted as STAR2). Finally, we integrate STAR1, STAR3, sensors and reporters to create the multi-factor bio-detector.
In order to construct a visible detection system, we determine to use chromoprotein as our reporter. Chromoprotein is a kind of protein which contains the structure of pigment so it can display relevant color under light. We choose it as the reporter for two main reasons: easy-to-detect and variability. The property of easy identification by naked eyes makes it a more convenient tool comparing to fluorescent proteins which require specific excitation light. Also, with the same feature as pigment, mixing two different chromoproteins can form a third color under the color mixing theory.
Chromoproteins have been wildly used these years, but we haven't found any effective and convenient way to measure their concentration. So, we develop a new method to achieve the concentration measurement by taking pictures and analyzing the colorimetric values in mobile device. This detection system is called small Chromoprotein Analyze Toolbox, short for smallCAT, which can also identify any mixed color by generating a color chart or colorimetric card. A customized plastic box is used for controlling environmental impacts and the analyze program can be installed as an APP in mobile device or run in MATLAB in desktops.