Difference between revisions of "Team:XJTLU-CHINA/Model"

 
(31 intermediate revisions by 3 users not shown)
Line 12: Line 12:
 
     margin-bottom:20px;
 
     margin-bottom:20px;
 
     }
 
     }
     p{
+
     p, ol{
     font-size:18px !important;
+
     font-size:20px !important;
 
     }
 
     }
 
     .form{
 
     .form{
Line 31: Line 31:
 
<div class="container">
 
<div class="container">
 
<h1>Modeling on the sensing device</h1>
 
<h1>Modeling on the sensing device</h1>
 +
<img class="img-responsive center-block" src=" https://static.igem.org/mediawiki/2017/f/ff/Circuit_Modeling_Sensing_device.png" height=700 width=800>
 
<p>In the mathematical modeling of quorum sensing, we formulated a system of ordinary equations representing the intracellular and extracellular interactions between the two Agr proteins and AIP (auto-inducing peptide) molecules. Along with numerical simulations, we performed an asymptotic analysis of the time-dependent model in order to characterize whether the AIP molecules produced by <i>Staphylococcus aureus</i> in the intestine would activate our sensing device.</p>
 
<p>In the mathematical modeling of quorum sensing, we formulated a system of ordinary equations representing the intracellular and extracellular interactions between the two Agr proteins and AIP (auto-inducing peptide) molecules. Along with numerical simulations, we performed an asymptotic analysis of the time-dependent model in order to characterize whether the AIP molecules produced by <i>Staphylococcus aureus</i> in the intestine would activate our sensing device.</p>
 
<p>To build the model, we first proposed the following assumptions:</p>
 
<p>To build the model, we first proposed the following assumptions:</p>
 
<ul>
 
<ul>
<li>The agr mRNA contains all the information required for the translation of AgrC and AgrA. There are plentiful ribosomes for translation within the cells and the rates of translations of AgrC and AgrA are the same, and are proportional to the concentrations of their mRNA.</li>
 
 
<li>Proteins and mRNA inside the cells are limited by natural degradation.</li>
 
<li>Proteins and mRNA inside the cells are limited by natural degradation.</li>
<li>Housekeeping phosphatases are able to dephosphorylate AgrA at rate α<sb>pidi</sub>.</li>
+
<li>Housekeeping phosphatases are able to dephosphorylate AgrA at rate α<sub>pidi</sub>.</li>
 
<li>Receptor-bound AIP can dissociate spontaneously at rate α<sub>unbind</sub>.</li>
 
<li>Receptor-bound AIP can dissociate spontaneously at rate α<sub>unbind</sub>.</li>
 
<li>When an AIP binds to AgrC, we assume that auto-phosphorylation of AgrC happens simultaneously because this process is sufficiently fast. When AgrC transfers its phosphate group to AgrA at rate α<sub>pi</sub>, it is able to re-auto-phosphorylate.</li>
 
<li>When an AIP binds to AgrC, we assume that auto-phosphorylation of AgrC happens simultaneously because this process is sufficiently fast. When AgrC transfers its phosphate group to AgrA at rate α<sub>pi</sub>, it is able to re-auto-phosphorylate.</li>
Line 56: Line 56:
 
             <tr>
 
             <tr>
 
                 <th>Parameters</th>
 
                 <th>Parameters</th>
                 <th>Pate constant for</th>
+
                 <th>Rate constant for</th>
 
                 <th>Value</th>
 
                 <th>Value</th>
 
                 <th>Units</th>
 
                 <th>Units</th>
Line 82: Line 82:
 
                 <td>Degradation and dilution</td>
 
                 <td>Degradation and dilution</td>
 
                 <td>2<sup>[1]</sup></td>
 
                 <td>2<sup>[1]</sup></td>
 +
                <td>h<sup>-1</sup></td>
 +
                <td></td>
 +
            </tr>
 +
           
 +
            <tr>
 +
                <td>μ<sub>sfGFP</sub></td>
 +
                <td>Degradation of sfGFP</td>
 +
                <td>0.378</td>
 +
                <td>h<sup>-1</sup></td>
 +
                <td>Assume the same as GFP</td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>μ<sub>Am</sub>, μ<sub>Cm</sub>, μ<sub>sfGFPm</sub></td>
 +
                <td>Degradation of mRNA</td>
 +
                <td>17.28<sup>[4]</sup></td>
 
                 <td>h<sup>-1</sup></td>
 
                 <td>h<sup>-1</sup></td>
 
                 <td></td>
 
                 <td></td>
Line 159: Line 175:
 
                 <td>10<sup>[1]</sup></td>
 
                 <td>10<sup>[1]</sup></td>
 
                 <td>μmol h<sup>-1</sup></tb>
 
                 <td>μmol h<sup>-1</sup></tb>
 +
                <td></td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>l<sub>pinsA</sub></td>
 +
                <td>Leakage factor of pinsA</td>
 +
                <td>0.02</td>
 +
                <td>-</tb>
 +
                <td>Assume the same as l<sub>ptet</sub></td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>l<sub>P2</sub></td>
 +
                <td>Leakage factor of P2</td>
 +
                <td>0.02</td>
 +
                <td>-</tb>
 +
                <td>Assume the same as l<sub>ptet</sub></td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>a</td>
 +
                <td>Translation rate</td>
 +
                <td>61200<sup>[3]</sup></td>
 +
                <td>Amino acid residues h<sup>-1</sup></tb>
 +
                <td></td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>S<sub>A</sub></td>
 +
                <td>Length of AgrA</td>
 +
                <td>207</td>
 +
                <td>Amino acid residues</tb>
 +
                <td></td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>S<sub>C</sub></td>
 +
                <td>Length of AgrC</td>
 +
                <td>413</td>
 +
                <td>Amino acid residues</tb>
 +
                <td></td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>S<sub>sfGFP</sub></td>
 +
                <td>Length of sfGFP</td>
 +
                <td>237</td>
 +
                <td>Amino acid residues</tb>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
Line 179: Line 243:
 
             </tr>
 
             </tr>
  
 +
            <tr>
 +
                <td>Am</td>
 +
                <td>mRNA of AgrA</td>
 +
                <td>μmol&nbsp; ml<sup>-1</sup></td>
 +
            </tr>   
 +
 
 
             <tr>
 
             <tr>
 
                 <td>A</td>
 
                 <td>A</td>
 
                 <td>AgrA</td>
 
                 <td>AgrA</td>
 +
                <td>μmol&nbsp; ml<sup>-1</sup></td>
 +
            </tr>
 +
 +
            <tr>
 +
                <td>Cm</td>
 +
                <td>mRNA of AgrC</td>
 
                 <td>μmol&nbsp; ml<sup>-1</sup></td>
 
                 <td>μmol&nbsp; ml<sup>-1</sup></td>
 
             </tr>
 
             </tr>
Line 214: Line 290:
 
                 <td>μmol ml<sup>-1</sup></td>
 
                 <td>μmol ml<sup>-1</sup></td>
 
             </tr>  
 
             </tr>  
 +
 +
            <tr>
 +
                <td>sfGFPm</td>
 +
                <td>mRNA of sfGFP</td>
 +
                <td>μmol ml<sup>-1</sup></td>
 +
            </tr>     
 
              
 
              
 
             <tr>
 
             <tr>
Line 222: Line 304:
 
         </table>
 
         </table>
 
     </div>
 
     </div>
<p>The three Hill equations represent the rates of translation of AgrA, AgrC and sfGFP. Β<sub>1</sub> is the highest efficiency for the promoter pnisA to initiate the transcription of the agrC and agrA genes, and β<sub>2</sub> is the highest efficiency for the promoter P2 to initiate the transcription of the sfGFP gene. X is the concentration of nisin which is needed to activate the promoter pnisA, to this extent, k<sub>1</sub> equals to the concentration of A<sub>pi</sub> when the rate of reaction is up to half of V<sub>max</sub>. K<sub>2</sub>, which is controlled by another regulatory factor, is the concentration of phosphorylated AgrA when the rate of reaction is up to half of V<sub>max</sub>.</p>
+
<p>The three Hill equations represent the rates of transcription of agrA, agrC and sfGFP genes. β<sub>1</sub> is the highest efficiency for the promoter pnisA to initiate the transcription of the agrC and agrA genes, and β<sub>2</sub> is the highest efficiency for the promoter P2 to initiate the transcription of the sfGFP gene. X is the concentration of nisin which is needed to activate the promoter pnisA, to this extent, k<sub>1</sub> equals to the concentration of nisin when the rate of reaction is up to half of V<sub>max</sub>. K<sub>2</sub>, which is controlled by another regulatory factor, is the concentration of phosphorylated AgrA when the rate of reaction is up to half of V<sub>max</sub>.</p>
<p>By assuming that 0.25 μM of AIP molecules is present in the intestine, we run the MATLAB script to check whether AIP molecules can successfully activate the promoter P2 by binding to AgrC and phosphorylating AgrA. We set the threshold concentration of sfGFP to be 0.5 μM, and at this point, we consider the promoter P2 is activated. The results are shown below.</p>
+
<p>By assuming that 0.25 μM of AIP molecules is present in the intestine, we run the MATLAB script to check whether AIP molecules can successfully activate the promoter P2 by binding to AgrC and phosphorylating AgrA. We used a reporter protein sfGFP to show the activation of the sensing device. If there is an apparent increase of sfGFP concentration, the sensing device can be considered as being activated. The results are shown below.</p>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/9/9e/State_values.png" height=600 width=600>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/9/9e/State_values.png" height=600 width=600>
 
<p class="form"><b>Fig 1.</b>&nbsp;&nbsp;&nbsp;&nbsp;State values of AgrA, Cbind, AgrC, Cp, Api and sfGFP.</p>   
 
<p class="form"><b>Fig 1.</b>&nbsp;&nbsp;&nbsp;&nbsp;State values of AgrA, Cbind, AgrC, Cp, Api and sfGFP.</p>   
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/b/be/Individual_display_of_6_variables.png" height=700 width=700>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/b/be/Individual_display_of_6_variables.png" height=700 width=700>
<p class="form"><b>Fig 2.</b>&nbsp;&nbsp;&nbsp;&nbsp;Individual display of 6 variables</p>   
+
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/9/93/Individual_display_of_9_variables.png"height=700 width=700>
<p>As it is shown in the second graph (values are hard to observe in the first one), concentration of sfGFP reaches 0.5 μM at the third hour. Therefore, we made a conclusion that the amount of AIP molecules can activate the promoter P2 to transcribe the genes downstream.</p>
+
<p class="form"><b>Fig 2.</b>&nbsp;&nbsp;&nbsp;&nbsp;Individual display of 9 variables</p>   
 +
<p>As it is shown in the Figure 1 and 2, the concentration of sfGFP is enough high after several hours. Therefore, we made a conclusion that the amount of AIP molecules can activate the promoter P2 to transcribe the genes downstream.</p>
 +
<p>To verify whether the cross-inhibition (introduced in the description section)can result in a decrease in AIP and
 +
            virulence factor in
 +
            <i>Staphylococcus aureus</i>, we hijacked the modeling of the sensing device into the quorum sensing system. By
 +
            assuming the concentration of AIPs decreases to 0.1 μM by the cross-inhibition of another type of AIPs, we run
 +
            the MATLAB script again to check whether there is any change in sfGFP production.</p>
 +
      <img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/9/95/Cross-inhibition1.png" height=600 width=600>
 +
<p class="form"><b>Fig 3.</b>&nbsp;&nbsp;&nbsp;&nbsp;State values of 9 variables.</p>
 +
        <img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/3/31/Cross-inhibition2.png" height=600 width=600>
 +
        <img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/9/9a/Cros-inhibition3.png" height=600 width=600>
 +
<p class="form"><b>Fig 4.</b>&nbsp;&nbsp;&nbsp;&nbsp;Individual display  of 9 variables.</p>
 +
        <h2>Discussion</h2>
 +
        <p>As shown in Figures 3 and 4, the concentration of sfGFP is extremely low when compared with the case of 0. 25 μM
 +
            AIPs. Therefore, the amount of AIP molecules can dramatically affect the P2 promoter to express the downstream
 +
            genes. Based on the result of sfGFP expression, we can also make a conclusion that in the case of the quorum
 +
            sensing of
 +
            <i>Staphylococcus aureus</i>, their signal transduction of AIPs can be cross-inhibited by a different type of AIPs.
 +
            As a result, AIPs and virulence factors cannot be further produced.</p>
 
<h1>Modelling on peptide synthesis and cell lysis</h1>
 
<h1>Modelling on peptide synthesis and cell lysis</h1>
<p>Our design uses the tandem repeat strategy to express three copies of each peptide gene, LL-37, GF-17 and Grammistin-Pp1, aiming to producing peptides quickly and at a higher rate. To release the peptides to kill <i>Staphylococcus aureus</i> in the intestine, we choose lysis of the cells instead of secretion. A lysis gene is used to open up the cells, then all the peptides will surely be released into the guts. In addition, we plan to use a toggle switch to provide more time for peptide synthesis before lysis. When the cells are lysed, it will result in the release of intracellular proteins and stop all life activities. Therefore, we use modeling to identify:</p>
+
<img class="img-responsive center-block" src=" https://static.igem.org/mediawiki/2017/4/4d/Circuit_Modeling_Peptide_and_lysis.png" height=700 width=800>
 +
<p>Our design uses the tandem repeat strategy to express three copies of each peptide gene, LL-37, GF-17 and Grammistin-Pp1, aiming to produce peptides with a higher rate. To release the peptides to kill <i>Staphylococcus aureus</i> in the intestine, we choose lysis of the cells instead of secretion. A lysis gene is used to open up the cells, then all the peptides will surely be released into the guts. In addition, we plan to use a toggle switch to provide more time for peptide synthesis before lysis. When the cells are lysed, it will result in the release of intracellular proteins and stop all life activities. Therefore, we use modeling to identify:</p>
 
<ol>
 
<ol>
<li>How long does cell lysis take from the point of induction?</li>
+
<li>How much time can the toggle switch provide for the accumulation of AMPs?</li>
<li>At this time point, how much peptides are produced by the gene circuit?</li>
+
 
</ol>
 
</ol>
 
<p>Results: </br>
 
<p>Results: </br>
Inspired by the team TU-Delft (2013), we came up with the idea that the promoters P2, plac and ptet may serve as binary switches between the active and inactive promoter states instead of continuous activities from fully on to fully off. We used the parameter--s, a binary state descriptor, to refer to the situation when a promoter produces one of the two levels of activity: on or off.</p>
+
Inspired by the team TU-Delft (2013), we simplified the promoters P2 to serve as a binary switch between the active and inactive promoter states instead of continuous activities from fully on to fully off. We used the parameter--s, a binary state descriptor, to refer to the situation when a promoter produces one of the two levels of activity: on or off. In addition, the original amount of TetR  was assumed to be 200 μmol. Due to the unknown concentration of AcmA to lyse the cells, this value was assumed to be 50 μmol.
 +
</p>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/6/6f/Modelling_on_peptide_synthesis_and_cell_lysis.png" height=350 width=350>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/6/6f/Modelling_on_peptide_synthesis_and_cell_lysis.png" height=350 width=350>
 
<p>Table 3 Definitions of parameters</p>
 
<p>Table 3 Definitions of parameters</p>
Line 262: Line 363:
 
                 <td>translation rate per amino acid</td>
 
                 <td>translation rate per amino acid</td>
 
                 <td>1020<sup>[3]</sup></td>
 
                 <td>1020<sup>[3]</sup></td>
                 <td>Min<sup>-1</sup> amino acids residues<sup>-1</sup></td>
+
                 <td>Amino acids residues min<sup>-1</sup> </sup></td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
  
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>c<sub>P2</sub></i></td>
 
                 <td>maximum transcription rate of P2</td>
 
                 <td>maximum transcription rate of P2</td>
 
                 <td>0.17<sup>[1]</sup></td>
 
                 <td>0.17<sup>[1]</sup></td>
Line 275: Line 376:
  
 
             <tr>
 
             <tr>
                 <td><i>c<sub>tetR</sub></i></td>
+
                 <td><i>c<sub>ptet</sub></i></td>
 
                 <td>maximum transcription rate of ptet</td>
 
                 <td>maximum transcription rate of ptet</td>
 
                 <td>2.79<sup>[3]</sup></td>
 
                 <td>2.79<sup>[3]</sup></td>
Line 287: Line 388:
 
                 <td>2.79</td>
 
                 <td>2.79</td>
 
                 <td>μmol<sup>-1</sup>  min<sup>-1</sup></td>
 
                 <td>μmol<sup>-1</sup>  min<sup>-1</sup></td>
                 <td>Assume the same as <i>c<sub>tetR</sub></i> </td>
+
                 <td>Assume the same as <i>c<sub>ptet</sub></i> </td>
 
             </tr>
 
             </tr>
 
              
 
              
 
             <tr>
 
             <tr>
 
                 <td><i>d<sub>mRNA</sub></i></td>
 
                 <td><i>d<sub>mRNA</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>degradation rate of mRNA</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.288<sup>[4]</sup></td>
                 <td>μmol  min<sup>-1</sup></td>
+
                 <td>min<sup>-1</sup></td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
              
 
              
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>d<sub>Lacl</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>degradation rate of Lacl</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.1386<sup>[4]</sup></td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>min<sup>-1</sup></td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>d<sub>TetR</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>degradation rate of TetR</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.1386<sup>[4]</sup></td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>min<sup>-1</sup></td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>d<sub>AcmA</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>degradation rate of AcmA</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.033</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>min<sup>-1</sup></td>
                 <td></td>
+
                 <td>Assume the same as μ<sub>x</sub></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>d<sub>GFn</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>degradation rate of GFn</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.011</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>min<sup>-1</sup></td>
                 <td></td>
+
                 <td>Assume the one-third of μ<sub>x</sub></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>d<sub>Gram</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>degradation rate of Gran</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.011</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>min<sup>-1</sup></td>
                 <td></td>
+
                 <td>Assume the one-third of μ<sub>x</sub></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>d<sub>LLn</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>degradation rate of LLn</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.011</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>min<sup>-1</sup></td>
                 <td></td>
+
                 <td>Assume the one-third of μ<sub>x</sub></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>l<sub>P2</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>Leakage factor of P2</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.002</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                <td>-</td>
                <td></td>
+
                 <td>Assume the same as <i>l<sub>ptet</sub></i></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>l<sub>ptet</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>Leakage factor of ptet</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>0.002<sup>[3]</sup></td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>-</td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
  
 
             <tr>
 
             <tr>
                 <td>μ<sub>x</sub></td>
+
                 <td><i>l<sub>plac</sub></i></td>
                 <td>Degradation and dilution</td>
+
                 <td>Leakage factor of plac</td>
                 <td>2<sup>[1]</sup></td>
+
                 <td>0.002</td>
                 <td>h<sup>-1</sup></td>
+
                <td>-</td>
                <td></td>
+
                 <td>Assume the same as <i>l<sub>ptet</sub></i></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>S<sub>Lacl</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>length of Lacl</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>371</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>Amino Acid residues</td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>S<sub>TetR</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>length of TetR</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>226</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>Amino Acid residues</td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>S<sub>AcmA</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>length of AcmA</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>438</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>Amino Acid residues</td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>S</i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>Activation</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>1<sup>[3]</sup></td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>-</td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>k<sub>LacI</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>dissociation constant of LacI</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>6</td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                <td>μmol</td>
                <td></td>
+
                 <td>Assume the same as <i>k<sub>TetR</sub></i></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>k<sub>TetR</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>dissociation constant of TetR</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>6<sup>[3]</sup></td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>μmol</td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
                 <td><i>c<sub>p2</sub></i></td>
+
                 <td><i>n<sub>TetR</sub></i></td>
                 <td>maximum transcription rate of P2</td>
+
                 <td>Hills coefficient</td>
                 <td>0.17<sup>[1]</sup></td>
+
                 <td>3<sup>[3]</sup></td>
                 <td>μmol&nbsp;  min<sup>-1</sup></td>
+
                 <td>-</td>
 
                 <td></td>
 
                 <td></td>
 
             </tr>
 
             </tr>
Line 414: Line 515:
  
 
             <tr>
 
             <tr>
                 <td>α<sub>cbind</sub></td>
+
                 <td><i>n<sub>Lacl</sub></i></td>
                <td>AgrC that anchors to the cell membrane</td>
+
                 <td>Hills coefficient</td>
                <td>10</td>
+
                 <td>3</td>
                <td>μmol<sup>-1</sup>&nbsp; ml<sup>-1</sup>&nbsp; h<sup>-1</sup></td>
+
                 <td>-</td>
                <td>Assume the same as α<sub>pi</sub></td>
+
                 <td>Assume the same as <i>n<sub>TetR</sub></i></td>
            </tr>
+
 
+
            <tr>
+
                 <td>α<sub>bind</sub></td>
+
                 <td>Binding of AIP to AgrC</td>
+
                 <td>1<sup>[1]</sup></td>
+
                <td>μmol<sup>-1</sup>&nbsp; ml<sup>-1</sup>&nbsp; h<sup>-1</sup></td>
+
                 <td></td>
+
            </tr>
+
 
+
            <tr>
+
                <td>α<sub>unbind</sub></td>
+
                <td>Separation of AIP from AgrC</td>
+
                <td>0.1<sup>[1]<sup></td>
+
                <td>h<sup>-1</sup></td>
+
                <td></td>
+
 
             </tr>
 
             </tr>
 
         </table>
 
         </table>
Line 457: Line 542:
  
 
             <tr>
 
             <tr>
                 <td>tetRm</td>
+
                 <td>TetRm</td>
 
                 <td>Transcribed TetR</td>
 
                 <td>Transcribed TetR</td>
 
             </tr>
 
             </tr>
Line 487: Line 572:
  
 
             <tr>
 
             <tr>
                 <td>tetR</td>
+
                 <td>TetR</td>
                 <td>Translated tetR</td>
+
                 <td>Translated TetR</td>
 
             </tr>
 
             </tr>
  
Line 508: Line 593:
 
     </div>
 
     </div>
 
<p>By running the Matlab script, we obtained the results shown below.</p>
 
<p>By running the Matlab script, we obtained the results shown below.</p>
 +
      <p>Without the toggle switch:</p>
 +
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/9/91/Peptide_synthesis_without_the_toggle_switch.png" height=600 width=600>
 +
<p class="form"><b>Fig 5.</b>&nbsp;&nbsp;&nbsp;&nbsp;State values of LacIm, GFnm, Granm, LLnm, AcmAm, LacI, tetR, AcmA, GFn, Gran, LLn.</p>
 +
      <p>With the toggle switch:</p>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/a/aa/Figure_3_State_values_.png" height=600 width=600>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/a/aa/Figure_3_State_values_.png" height=600 width=600>
<p class="form"><b>Fig 3.</b>&nbsp;&nbsp;&nbsp;&nbsp;State values of LacIm, GFnm, Granm, LLnm, tetRm, AcmAm, LacI, tetR, AcmA, GFn, Gran, LLn.</p>  
+
<p class="form"><b>Fig 6.</b>&nbsp;&nbsp;&nbsp;&nbsp;State values of LacIm, GFnm, Granm, LLnm, tetRm, AcmAm, LacI, tetR, AcmA, GFn, Gran, LLn.</p>  
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/f/f8/Individual_display_of_transcribed.png" height=600 width=600>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/f/f8/Individual_display_of_transcribed.png" height=600 width=600>
<p class="form"><b>Fig 4.</b>&nbsp;&nbsp;&nbsp;&nbsp;Individual display of transcribed LacIm, GFnm, Granm, LLnm, tetRm and AcmAm</p>  
+
<p class="form"><b>Fig 7.</b>&nbsp;&nbsp;&nbsp;&nbsp;Individual display of transcribed LacIm, GFnm, Granm, LLnm, tetRm and AcmAm</p>  
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/c/cc/Figure_5_Individual_display_of_translated.png" height=600 width=600>
 
<img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2017/c/cc/Figure_5_Individual_display_of_translated.png" height=600 width=600>
<p class="form"><b>Fig 5.</b>&nbsp;&nbsp;&nbsp;&nbsp;Individual display of translated LacI, tetR, AcmA, GFn, Gran and LLn.</p>  
+
<p class="form"><b>Fig 8.</b>&nbsp;&nbsp;&nbsp;&nbsp;Individual display of translated LacI, tetR, AcmA, GFn, Gran and LLn.</p>  
 
    
 
    
<p>From these graphs, we can make a general conclusion that the shift between the two states controlled by LacI and TetR takes at least 20 minutes. By the time the promoter P2 initiates the transcription and later efficiently translation of the mRNA of the tandem repeat genes (ll-37, gf-17, and grammistin-Pp1), the antimicrobial peptides are capable of being synthesized at high rates. When the repression of the promoter ptet (tetR) is relieved and the lysis gene acmA (AcmAm) starts to be transcribed, the antimicrobial peptides can be accumulated to high concentrations. Thereafter, enough amounts of antimicrobial peptides will be released to eradicate <i>Staphylococcus aureus</i> through the cell lysis.</p>
+
<p>From these graphs, we can make a general conclusion that the toggle switch provides at least 35 minutes for the peptide accumulation. By the time the promoter P2 initiates the transcription and later efficiently translation of the mRNA of the tandem repeat genes (ll-37, gf-17, and grammistin-Pp1), the antimicrobial peptides are capable of being synthesized at high rates. When the repression of the promoter ptet (tetR) is relieved and the lysis gene acmA (AcmAm) starts to be transcribed, the antimicrobial peptides can be accumulated to high concentrations. Thereafter, enough amounts of antimicrobial peptides will be released to eradicate <i>Staphylococcus aureus</i> through the cell lysis.</p>
 
<p>References<br>
 
<p>References<br>
 
[1] Z. Cai, et al. “A simulation of Synthetic <i>agr</i> System in <i>E. coli</i>,”<i>in Bioinformatics Research and Applications</i>. Charlotte, NC: Springer, 2013, pp76-86.<br>
 
[1] Z. Cai, et al. “A simulation of Synthetic <i>agr</i> System in <i>E. coli</i>,”<i>in Bioinformatics Research and Applications</i>. Charlotte, NC: Springer, 2013, pp76-86.<br>

Latest revision as of 04:03, 27 November 2017

Modeling

Modeling

Modeling on the sensing device

In the mathematical modeling of quorum sensing, we formulated a system of ordinary equations representing the intracellular and extracellular interactions between the two Agr proteins and AIP (auto-inducing peptide) molecules. Along with numerical simulations, we performed an asymptotic analysis of the time-dependent model in order to characterize whether the AIP molecules produced by Staphylococcus aureus in the intestine would activate our sensing device.

To build the model, we first proposed the following assumptions:

  • Proteins and mRNA inside the cells are limited by natural degradation.
  • Housekeeping phosphatases are able to dephosphorylate AgrA at rate αpidi.
  • Receptor-bound AIP can dissociate spontaneously at rate αunbind.
  • When an AIP binds to AgrC, we assume that auto-phosphorylation of AgrC happens simultaneously because this process is sufficiently fast. When AgrC transfers its phosphate group to AgrA at rate αpi, it is able to re-auto-phosphorylate.

The resulting equations, together with the definitions of the parameters and variables are shown below.

Table 1 Definitions of the parameters


Parameters Rate constant for Value Units Note
αpi Phosphorylation of AgrA 10[1] μmol-1 ml-1 h-1
αpidi Dephosphorylation of AgrA 1[1] h-1
μx Degradation and dilution 2[1] h-1
μsfGFP Degradation of sfGFP 0.378 h-1 Assume the same as GFP
μAm, μCm, μsfGFPm Degradation of mRNA 17.28[4] h-1
αcbind AgrC that anchors to the cell membrane 10 μmol-1 ml-1 h-1 Assume the same as αpi
αbind Binding of AIP to AgrC 1[1] μmol-1 ml-1 h-1
αunbind Separation of AIP from AgrC 0.1[1] h-1

Parameters Definitions Value Units Note
X Nisin 1.42×10-7[2] μmol ml-1
k2 The Phosphorylated AgrA concentration required for half-maximal transcription rate of P2 1[1] μmol ml-1
β1 Maximum transcription rate of pnisA 10 μmol h-1 Assume the same as β2
β2 Maximum transcription rate of P2 10[1] μmol h-1
lpinsA Leakage factor of pinsA 0.02 - Assume the same as lptet
lP2 Leakage factor of P2 0.02 - Assume the same as lptet
a Translation rate 61200[3] Amino acid residues h-1
SA Length of AgrA 207 Amino acid residues
SC Length of AgrC 413 Amino acid residues
SsfGFP Length of sfGFP 237 Amino acid residues

Table 2 Definitions of the variables


Variables Concentration of Units
Am mRNA of AgrA μmol  ml-1
A AgrA μmol  ml-1
Cm mRNA of AgrC μmol  ml-1
C AgrC μmol ml-1
Cbind AgrC that anchors to the cell membrane μmol ml-1
AIP Free AIP molecules μmol ml-1
Cp AIP-bound AgrC μmol ml-1
Api The phosphorylated AgrA μmol ml-1
sfGFPm mRNA of sfGFP μmol ml-1
sfGFP The product of P2 promoter μmol ml-1

The three Hill equations represent the rates of transcription of agrA, agrC and sfGFP genes. β1 is the highest efficiency for the promoter pnisA to initiate the transcription of the agrC and agrA genes, and β2 is the highest efficiency for the promoter P2 to initiate the transcription of the sfGFP gene. X is the concentration of nisin which is needed to activate the promoter pnisA, to this extent, k1 equals to the concentration of nisin when the rate of reaction is up to half of Vmax. K2, which is controlled by another regulatory factor, is the concentration of phosphorylated AgrA when the rate of reaction is up to half of Vmax.

By assuming that 0.25 μM of AIP molecules is present in the intestine, we run the MATLAB script to check whether AIP molecules can successfully activate the promoter P2 by binding to AgrC and phosphorylating AgrA. We used a reporter protein sfGFP to show the activation of the sensing device. If there is an apparent increase of sfGFP concentration, the sensing device can be considered as being activated. The results are shown below.

Fig 1.    State values of AgrA, Cbind, AgrC, Cp, Api and sfGFP.

Fig 2.    Individual display of 9 variables

As it is shown in the Figure 1 and 2, the concentration of sfGFP is enough high after several hours. Therefore, we made a conclusion that the amount of AIP molecules can activate the promoter P2 to transcribe the genes downstream.

To verify whether the cross-inhibition (introduced in the description section)can result in a decrease in AIP and virulence factor in Staphylococcus aureus, we hijacked the modeling of the sensing device into the quorum sensing system. By assuming the concentration of AIPs decreases to 0.1 μM by the cross-inhibition of another type of AIPs, we run the MATLAB script again to check whether there is any change in sfGFP production.

Fig 3.    State values of 9 variables.

Fig 4.    Individual display of 9 variables.

Discussion

As shown in Figures 3 and 4, the concentration of sfGFP is extremely low when compared with the case of 0. 25 μM AIPs. Therefore, the amount of AIP molecules can dramatically affect the P2 promoter to express the downstream genes. Based on the result of sfGFP expression, we can also make a conclusion that in the case of the quorum sensing of Staphylococcus aureus, their signal transduction of AIPs can be cross-inhibited by a different type of AIPs. As a result, AIPs and virulence factors cannot be further produced.

Modelling on peptide synthesis and cell lysis

Our design uses the tandem repeat strategy to express three copies of each peptide gene, LL-37, GF-17 and Grammistin-Pp1, aiming to produce peptides with a higher rate. To release the peptides to kill Staphylococcus aureus in the intestine, we choose lysis of the cells instead of secretion. A lysis gene is used to open up the cells, then all the peptides will surely be released into the guts. In addition, we plan to use a toggle switch to provide more time for peptide synthesis before lysis. When the cells are lysed, it will result in the release of intracellular proteins and stop all life activities. Therefore, we use modeling to identify:

  1. How much time can the toggle switch provide for the accumulation of AMPs?

Results:
Inspired by the team TU-Delft (2013), we simplified the promoters P2 to serve as a binary switch between the active and inactive promoter states instead of continuous activities from fully on to fully off. We used the parameter--s, a binary state descriptor, to refer to the situation when a promoter produces one of the two levels of activity: on or off. In addition, the original amount of TetR was assumed to be 200 μmol. Due to the unknown concentration of AcmA to lyse the cells, this value was assumed to be 50 μmol.

Table 3 Definitions of parameters


Parameters Definitions Value Units Note
a translation rate per amino acid 1020[3] Amino acids residues min-1
cP2 maximum transcription rate of P2 0.17[1] μmol min-1
cptet maximum transcription rate of ptet 2.79[3] μmol-1 min-1
cplac maximum transcription rate of plac 2.79 μmol-1 min-1 Assume the same as cptet
dmRNA degradation rate of mRNA 0.288[4] min-1
dLacl degradation rate of Lacl 0.1386[4] min-1
dTetR degradation rate of TetR 0.1386[4] min-1
dAcmA degradation rate of AcmA 0.033 min-1 Assume the same as μx
dGFn degradation rate of GFn 0.011 min-1 Assume the one-third of μx
dGram degradation rate of Gran 0.011 min-1 Assume the one-third of μx
dLLn degradation rate of LLn 0.011 min-1 Assume the one-third of μx
lP2 Leakage factor of P2 0.002 - Assume the same as lptet
lptet Leakage factor of ptet 0.002[3] -
lplac Leakage factor of plac 0.002 - Assume the same as lptet
SLacl length of Lacl 371 Amino Acid residues
STetR length of TetR 226 Amino Acid residues
SAcmA length of AcmA 438 Amino Acid residues
S Activation 1[3] -
kLacI dissociation constant of LacI 6 μmol Assume the same as kTetR
kTetR dissociation constant of TetR 6[3] μmol
nTetR Hills coefficient 3[3] -
nLacl Hills coefficient 3 - Assume the same as nTetR

Variables Concentration of
LacIm Transcribed LacI
TetRm Transcribed TetR
AcmAm Transcribed AcmA
GFnm Transcribed GF-17 (n=1,2,3)
Granm Transcribed Grammistin-Pp1 (n=1,2,3)
LLnm Transcribed LL-37 (n=1,2,3)
LacI Translated Lacl
TetR Translated TetR
GFn Translated GF-17 (n=1,2,3)
Gran Translated Grammistin-Pp1 (n=1,2,3)
LLn Translated LL-37 (n=1,2,3)

By running the Matlab script, we obtained the results shown below.

Without the toggle switch:

Fig 5.    State values of LacIm, GFnm, Granm, LLnm, AcmAm, LacI, tetR, AcmA, GFn, Gran, LLn.

With the toggle switch:

Fig 6.    State values of LacIm, GFnm, Granm, LLnm, tetRm, AcmAm, LacI, tetR, AcmA, GFn, Gran, LLn.

Fig 7.    Individual display of transcribed LacIm, GFnm, Granm, LLnm, tetRm and AcmAm

Fig 8.    Individual display of translated LacI, tetR, AcmA, GFn, Gran and LLn.

From these graphs, we can make a general conclusion that the toggle switch provides at least 35 minutes for the peptide accumulation. By the time the promoter P2 initiates the transcription and later efficiently translation of the mRNA of the tandem repeat genes (ll-37, gf-17, and grammistin-Pp1), the antimicrobial peptides are capable of being synthesized at high rates. When the repression of the promoter ptet (tetR) is relieved and the lysis gene acmA (AcmAm) starts to be transcribed, the antimicrobial peptides can be accumulated to high concentrations. Thereafter, enough amounts of antimicrobial peptides will be released to eradicate Staphylococcus aureus through the cell lysis.

References
[1] Z. Cai, et al. “A simulation of Synthetic agr System in E. coli,”in Bioinformatics Research and Applications. Charlotte, NC: Springer, 2013, pp76-86.
[2] NICE Expression System for Lactococcus lactis. MoBITec GmbH, Germany, 2010.
[3] Team: TU-Delft (2013). Timer Plus Sumo [Online]. Available: https://2013.igem.org/Team:TU-Delft/Timer_Plus_Sumo
[4] C. Wu, H. Lee, and B. Chen, "Robust synthetic gene network design via library-based search method," Bioinformatics, vol. 27, pp. 2700-2706, Oct. 2011.

Collaborators and Supporters

Location

Rm 363, Science Building
Xi'an Jiaotong-Liverpool University
111 Ren'ai Road, Suzhou, China
215123

Get in touch

email

igem@xjtlu.edu.cn

XJTLU-CHINA iGEM 2017