Difference between revisions of "Team:TAS Taipei/Applied Design"

 
(92 intermediate revisions by 3 users not shown)
Line 6: Line 6:
 
     <title>About Us</title>
 
     <title>About Us</title>
 
     <link href='http://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
 
     <link href='http://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
    <!-- <link rel="stylesheet" href="https://2017.igem.org/Template:TAS_Taipei/Bootstrap"> <link rel="stylesheet" href="https://2017.igem.org/Template:TAS_Taipei/JqueryJS"> <script src="https://2017.igem.org/Template:TAS_Taipei/BootstrapJS"></script> -->
 
 
     <style type='text/css'>
 
     <style type='text/css'>
 
         #top_title,
 
         #top_title,
Line 79: Line 78:
 
             </div>
 
             </div>
 
             <div class="box3 left biosafety" href="https://2017.igem.org/Team:TAS_Taipei/Safety">
 
             <div class="box3 left biosafety" href="https://2017.igem.org/Team:TAS_Taipei/Safety">
                 <h1>Biosafety</h1>
+
                 <h1>Safety</h1>
 
             </div>
 
             </div>
 
             <div class="box3 left about" href="https://2017.igem.org/Team:TAS_Taipei/Team">
 
             <div class="box3 left about" href="https://2017.igem.org/Team:TAS_Taipei/Team">
Line 94: Line 93:
 
         <div class="container">
 
         <div class="container">
 
             <h1>Prototype</h1>
 
             <h1>Prototype</h1>
             <h4>Design, Build and Test: Putting our project to work.</h4>
+
             <h4>Design, Build, and Test: Putting our project to work</h4>
 
         </div> <a href="#cv"><img src="https://static.igem.org/mediawiki/2017/4/4a/T--TAS_Taipei--Chevron_500px_200ppi.png" alt="test" id="chevron"></a> </div>
 
         </div> <a href="#cv"><img src="https://static.igem.org/mediawiki/2017/4/4a/T--TAS_Taipei--Chevron_500px_200ppi.png" alt="test" id="chevron"></a> </div>
 
     <!--全版面大型看板結尾-->
 
     <!--全版面大型看板結尾-->
 
     <div class="cv" id="cv">
 
     <div class="cv" id="cv">
 
         <div class="row">
 
         <div class="row">
             <nav class="pageNav col-lg-1">
+
             <nav class="pageNav col-lg-1_5">
 
                 <ul class="nav">
 
                 <ul class="nav">
                     <li> <a href="#WWT" class="pageNavBig">WASTEWATER TREATMNET</a> </li>
+
                     <li> <a href="#WWT" class="pageNavBig">WASTEWATER TREATMENT</a> </li>
                     <li> <a href="#what" class="pageNavSm">What is in the process?</a> </li>
+
                     <li> <a href="#what" class="pageNavSm">What is the process?</a> </li>
 
                     <li> <a href="#biosafety" class="pageNavSm">Biosafety</a> </li>
 
                     <li> <a href="#biosafety" class="pageNavSm">Biosafety</a> </li>
                     <li> <a href="#PR" class="pageNavBig">APPLYING PR IN WWTPs</a> </li>
+
                     <li> <a href="#PR" class="pageNavBig">PR CONSIDERATIONS</a> </li>
                     <li> <a href="#biofilm" class="pageNavBig">APPLYING BIOFILM IN WWTPs</a> </li>
+
                    <li> <a href="#PRApply" class="pageNavSm">Applying PR in a WWTP Model</a> </li>
                     <li> <a href="#volume" class="pageNavSm">Volume Does Not Affect NP Trapping</a> </li>
+
                     <li> <a href="#biofilm" class="pageNavBig">BIOFILM CONSIDERATIONS</a> </li>
                     <li> <a href="#SA" class="pageNavSm">Surface Area Affects NP Trapping Rate</a> </li>
+
                     <li> <a href="#volume" class="pageNavSm">Volume</a> </li>
 +
                     <li> <a href="#SA" class="pageNavSm">Surface Area</a> </li>
 
                     <li> <a href="#prototype" class="pageNavBig">BIOFILM PROTOTYPE</a> </li>
 
                     <li> <a href="#prototype" class="pageNavBig">BIOFILM PROTOTYPE</a> </li>
 
                     <li> <a href="#max" class="pageNavSm">Maximize NP-Biofilm Contact Area</a> </li>
 
                     <li> <a href="#max" class="pageNavSm">Maximize NP-Biofilm Contact Area</a> </li>
 
                     <li> <a href="#infra" class="pageNavSm">Maximize Adaptability to Existing Infrastructure</a> </li>
 
                     <li> <a href="#infra" class="pageNavSm">Maximize Adaptability to Existing Infrastructure</a> </li>
                     <li> <a href="#WWTPModel" class="pageNavSm">Biofilm Prototype in a WWTP Model</a> </li>
+
                     <li> <a href="#WWTPModel" class="pageNavSm">Applying Biofilm in a WWTP Model</a> </li>
                     <li> <a href="#ref" class="pageNavBig">Reference</a> </li>
+
                     <li> <a href="#ref" class="pageNavBig">REFERENCES</a> </li>
 
                 </ul>
 
                 </ul>
 
             </nav>
 
             </nav>
             <div class="white col-lg-2"> hi </div>
+
             <div class="white col-lg-2"> </div>
 
             <div class="col-lg-10">
 
             <div class="col-lg-10">
 
                 <!-- header -->
 
                 <!-- header -->
Line 123: Line 123:
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12">It is estimated that about 95% of nanoparticles used in consumer products end up in wastewater (<i>Kiser et al.</i> 2009). <b>Our goal is to apply our biofilm and Proteorhodopsin (PR) bacteria in wastewater treatment plants (WWTPs) to remove most nanoparticles</b> (NPs) before the effluent is released into the environment. </h4>
+
                         <h4 class="para col-lg-12">It is estimated that about 95% of nanoparticles (NPs) used in consumer products end up in wastewater (<i>Mueller & Nowack.</i> 2008). <b>Our goal is to apply our biofilm and Proteorhodopsin (PR) bacteria in wastewater treatment plants (WWTPs) to remove most NPs</b> before the effluent is released into the environment. </h4>
 
                     </div>
 
                     </div>
 
                     <div class="row this_border"></div>
 
                     <div class="row this_border"></div>
 
                 </header>
 
                 </header>
 
                 <section class="main">
 
                 <section class="main">
                     <div class="row" id="Research">
+
                     <div class="row" id="WWT">
 
                         <h1 class="title2 col-lg-12">WASTEWATER TREATMENT</h1>
 
                         <h1 class="title2 col-lg-12">WASTEWATER TREATMENT</h1>
 
                     </div>
 
                     </div>
 +
                    <div class="row" id="what">
 +
                        <h1 class="section-title col-lg-12">What is the process?</h1>
 +
                    </div>
 +
                    <div class="row">
 +
                        <div class="image_container col-lg-10 col-lg-offset-1">
 +
                            <img src="https://static.igem.org/mediawiki/2017/6/6e/T--TAS_Taipei--WWTPFlow.jpg" alt="test" id="group">
 +
                            <h4 class="subtitle">Figure 5-1<b> Typical wastewater treatment process. </b><span class="subCred">Figure: Yvonne W.</span></h4>
 +
                        </div>
 +
                    </div><br>
 
                     <div class="row">
 
                     <div class="row">
                         <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/c/ce/T--TAS_Taipei--Dihua_Tank-min.jpg" alt="test" id="group"> </div>
+
                         <h4 class="para col-lg-12">When wastewater enters a plant, the first step is to remove coarse solids and large materials using a grit screen (figure 5-1). The water can then be processed in three main stages: Primary, Secondary, and sometimes Tertiary Treatment (Pescod 1992). In <b>Primary Treatment</b>, heavy solids are removed by sedimentation while floating materials (such as oils) can be taken out by skimming. However, dissolved materials and colloids—small, evenly dispersed solids such as NPs—are not removed here (Pescod 1992). <b>Secondary Treatment</b> generally involves the use of aeration tanks, where aerobic microbes help to break down organic materials. This is also known as the activated sludge process (Davis 2005). In a subsequent sedimentation step, the microbes are removed and the effluent is disinfected (often by chlorine or UV) before it is released into the environment. In certain WWTPs, wastewater may go through <b>Tertiary Treatment</b>, an advanced process typically aimed to remove nitrogen and phosphorous, and assumed to produce an effluent free of viruses (Pescod 1992). However, Tertiary Treatment requires additional infrastructure that is expensive and complex, limiting its global usage (Pescod 1992; Malik 2014). </h4>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12">When wastewater enters a plant, the first step is to remove coarse solids and large materials using a grit screen (figure___). The water can then be processed in three main stages: Primary, Secondary, and sometimes Tertiary Treatment (Pescod 1992). In <b>Primary Treatment</b>, heavy solids are removed by sedimentation, and floating materials (such as oils) can be taken out by skimming. However, dissolved materials and colloids—small, evenly dispersed solids such as nanoparticles—are not removed here (Pescod 1992). <b>Secondary Treatment</b> generally involves the use of aeration tanks, where aerobic microbes help to break down organic materials. This is also known as the activated sludge process (Davis 2005). In a subsequent sedimentation step, the microbes are removed and the effluent is disinfected (often by chlorine or UV) before it is released into the environment. In certain WWTPs, wastewater may go through <b>Tertiary Treatment</b>, an advanced process typically aimed to remove nitrogen and phosphorous, and assumed to produce an effluent free of viruses. However, Tertiary Treatment requires additional infrastructure that is expensive and complex, limiting its global usage (Pescod 1992; Malik 2014). </h4>
+
                         <h4 class="para col-lg-12">Ideally, we would like to remove NPs from all systems, so we visited two different types of WWTPs: a local urban facility in Dihua, Taipei, and a smaller rural facility in Boswell, Pennsylvania. We found that wastewater in the two plants is treated using very similar processes (figures 5-2 and 5-3). We also contacted Thomas J. Brown, the Water Program Specialist of the Pennsylvania Department of Environmental Protection, and asked him if there were differences between rural and urban plants that we should consider when thinking about implementing our project. He responded, <b>“[t]he heart of the treatment process is the biological process used for treatment; the biology remains the same regardless of facility size.</b> Thus, in both types of WWTPs, we want to apply our engineered bacteria in the Secondary Treatment step—either in aeration tanks or in the sedimentation tank.
 +
</h4>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/e/e1/T--TAS_Taipei--DihuaDiagram-new.jpg" alt="test" id="group">
 
                         <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/e/e1/T--TAS_Taipei--DihuaDiagram-new.jpg" alt="test" id="group">
                             <h4 class="subtitle">We plan to add our bacteria either in the deep aeration tanks or the secondary sedimentation tanks. The disinfection tank will kill the bacteria used in previous tanks.<span class="subCred">Figure: Christine C.</span></h4>
+
                             <h4 class="subtitle"><b>Figure 5-2 Dihua WWTP sewage process. </b><span class="subCred">Figure: Christine C.</span></h4>
 
                         </div>
 
                         </div>
 
                     </div><br>
 
                     </div><br>
Line 149: Line 159:
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/2/2f/T--TAS_Taipei--BoswellDiagram-new.jpg" alt="test" id="group">
 
                         <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/2/2f/T--TAS_Taipei--BoswellDiagram-new.jpg" alt="test" id="group">
                             <h4 class="subtitle">We plan to add our bacteria either in the deep aeration tanks or the secondary sedimentation tanks. The disinfection tank will kill the bacteria used in previous tanks.<span class="subCred">Figure: Christine C.</span></h4>
+
                             <h4 class="subtitle"><b>Figure 5-3 Boswell WWTP sewage process. </b><span class="subCred">Figure: Christine C.</span></h4>
 
                         </div>
 
                         </div>
 
                     </div><br>
 
                     </div><br>
 
                     <div class="row">
 
                     <div class="row">
 
                         <video controls="" class="col-lg-10 col-lg-offset-1">
 
                         <video controls="" class="col-lg-10 col-lg-offset-1">
                             <source src="https://static.igem.org/mediawiki/2017/4/4b/T--TAS_Taipei--Final_Video.mp4" type="video/mp4"> Your browser does not support the video tag.
+
                             <source src="https://static.igem.org/mediawiki/2017/3/3a/T--TAS_Taipei--BoswellVid.mp4" type="video/mp4"> Your browser does not support the video tag.
 
                         </video>
 
                         </video>
 
                     </div>
 
                     </div>
                     <div class="row" id="Boswell">
+
                     <div class="row" id="biosafety">
 
                         <h1 class="section-title col-lg-12">Biosafety</h1>
 
                         <h1 class="section-title col-lg-12">Biosafety</h1>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> We have chosen to use a safe and common lab strain of <i>E. coli</i>, K-12, as our chassis (Environmental Protection Agency 1977). In both approaches, our constructs do not express proteins associated with virulence: PR is a membrane protein that commonly exists in marine bacteria, and for biofilm production we were careful to avoid known virulence factors such as alpha hemolysins (<i>Fattahi et al.</i> 2015). Most importantly, <b>biosafety is built into WWTPs</b>. Before treated effluent is released back into the environment, it must go through a final disinfection step, where chlorine, ozone, or UV radiation are used to kill microbes still present in the wastewater (Pescod 1992).  
+
                         <h4 class="para col-lg-12"> We used a safe and common lab strain of <i>E. coli</i>, K-12, as our chassis (Environmental Protection Agency 1977). In both approaches, our constructs do not express proteins associated with virulence: PR is a transmembrane protein that commonly exists in marine bacteria, and for biofilm production we were careful to avoid known virulence factors such as alpha hemolysins (<i>Fattahi et al.</i> 2015). Most importantly, <b>biosafety is built into WWTPs</b>. Before treated effluent is released back into the environment, it must go through a final disinfection step, where chlorine, ozone, or UV radiation are used to kill microbes still present in the wastewater (Pescod 1992).
</h4>
+
                        </h4>
 
                     </div>
 
                     </div>
                     <div class="row" id="Research">
+
                     <div class="row" id="PR">
                         <h1 class="title2 col-lg-12">APPLYING PR IN WWTPs</h1>
+
                         <h1 class="title2 col-lg-12">PR CONSIDERATIONS</h1>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> During our visit to Dihua WWTP, the chief engineer informed us that they use the activated sludge process, which uses aerobic microbes to digest organic matter in aeration tanks. The steady influx and mixing of air provide oxygen favorable to aerobic microbes; the turbulent water can also increase the probability of PR binding to citrate-capped NPs (CC-NPs). Thus, <b>we envision directly adding PR <i>E. coli</i> into existing aeration tanks</b>. In addition, as part of the activated sludge process, WWTPs regularly cycle microbe-rich sludge back into aeration tanks to maintain the microbial populations (figure _____). Ideally, this would stabilize the PR bacterial population in aeration tanks, allowing this system to be <b>low-maintenance and easily adaptable to existing infrastructure</b>.  
+
                         <h4 class="para col-lg-12"> During our visit to Dihua WWTP, the chief engineer informed us that they use the activated sludge process, which uses aerobic microbes to digest organic matter in aeration tanks. The steady influx and mixing of air provide oxygen favorable to aerobic microbes; the turbulent water also increases the probability of PR binding to citrate-capped NPs (CC-NPs). Thus, <b>we envision directly adding PR <i>E. coli</i> into existing aeration tanks</b>. In addition, as part of the activated sludge process, WWTPs regularly cycle microbe-rich sludge back into aeration tanks to maintain the microbial population (figure 5-1). Ideally, this would stabilize the PR bacterial population in aeration tanks, allowing this system to be <b>low-maintenance and easily adaptable to existing infrastructure</b>.  
+
</h4>
</h4>
+
                    </div>
 +
                    <div class="row">
 +
                        <h4 class="para col-lg-12"> To facilitate the application of PR bacteria in WWTPs, our modeling team created a calculator that informs WWTP managers the amount of PR bacteria they need to trap their desired amount of CC-NPs based on our experimental results and the conditions of their WWTP. Learn more about PR <a href="https://goo.gl/gu91Wj"><b>experiments</b></a>and <a href="https://goo.gl/ac2Qji"><b>modeling!</b></a></h4>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
Line 176: Line 188:
 
                             <source src="https://static.igem.org/mediawiki/2017/a/a8/T--TAS_Taipei--Oscar_Vid.mp4" type="video/mp4"> Your browser does not support the video tag.
 
                             <source src="https://static.igem.org/mediawiki/2017/a/a8/T--TAS_Taipei--Oscar_Vid.mp4" type="video/mp4"> Your browser does not support the video tag.
 
                         </video>
 
                         </video>
                     </div>
+
                     </div><br>
                     <div class="row" id="tap">
+
                     <div class="row" id="PRApply">
                         <h1 class="section-title col-lg-12">Tap Water Museum</h1>
+
                         <h1 class="section-title col-lg-12">Applying PR in a WWTP Model</h1>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> We visited the tap water museum hoping to find out more about how tap water is treated. We learned that water filtration methods vary in different areas of Taiwan, with Taipei’s filtration method being the simplest since the water is relatively clean compared to other regions, such as Kaohsiung, where the city is heavily industrialized. In Taipei, the source of tap water comes from a protected zone upstream of Xindian river. We also learned that they use sedimentation tanks and flocculation to help clump up and remove impurities. Due to the lack of a disinfection step, however, we realized that our project would not be applicable here, since our project depends on the use of <i>E. coli</i> bacteria. (Whole team activity) </h4>
+
                         <h4 class="para col-lg-8"> After we experimentally demonstrated that PR binds to CC-NPs, we wanted to <b>test PR bacteria under conditions similar to a WWTP aeration tank</b>. To learn more about those specific conditions, we visited and talked to engineers at Dihua WWTP, our local urban facility. At Dihua, wastewater is retained in aeration tanks for <b>up to 5 hours</b>, and a <b>central rotor constantly churns the wastewater</b>. To simulate these conditions, we built our own “aeration tank” using clear cylinders and a central rotor. Then, we set up three groups in separate aeration tanks: PR <i>E. coli</i> + distilled water, PR <i>E. coli</i> + CC-AgNP, or CC-AgNP solution alone (figure 5-4A). Finally, we turned on the rotor and churned the mixture for 5 hours. <br><br>
                     </div>
+
                    In WWTPs, aeration tanks lead to secondary sedimentation tanks (figure 5-2), where flocculants—polymers that aggregate suspended solids—are added to accelerate sedimentation. During our visit to Dihua WWTP, the engineers gave us samples of their flocculants. After 5 hours of mixing, we stopped the rotor and added the flocculant powder used by Dihua WWTP to each tank (video 5-1). In the CC-AgNP cylinder, adding flocculants did not have any effect (figure 5-4B and C), suggesting that <b>current wastewater treatment practices cannot remove NPs</b>. In the cylinders containing PR bacteria, however, aggregated materials (including bacteria) settled to the bottom of the cylinder as expected (figure 5-4B). We then centrifuged the contents of each cylinder, and observed that the pellet of the PR bacteria + CC-AgNPs mixture was orange, reflecting the presence of aggregated CC-AgNPs (figure 5-4C). <b>In this WWTP aeration tank simulation, we show that PR bacteria pulls down CC-AgNPs</b>. </h4>
 +
                        <div class="image_container col-lg-4">
 +
                            <img src="https://static.igem.org/mediawiki/2017/a/a3/T--TAS_Taipei--PR_prototype_exp.jpg" alt="test" id="group">
 +
                            <h4 class="subtitle"><b>Figure 5-4 Applying PR in a WWTP model.</b> A) Three groups were setup and churned for 5 hours: PR bacteria + distilled water, PR bacteria + CC-AgNPs, and CC-AgNPs + distilled water. B) After 5 hours, flocculants were added and aggregated materials settled to the bottom. C) We then centrifuged the contents of each cylinder, and observed that the pellet of the PR bacteria + CC-AgNPs mixture was orange, reflecting the presence of aggregated CC-AgNPs. <span class="subCred">Experiment & Figure: Justin Y.</span></h4>
 +
                        </div>
 +
                     </div><br>
 
                     <div class="row">
 
                     <div class="row">
                         <div class="image_container col-lg-6"> <img src="https://static.igem.org/mediawiki/2017/e/ec/T--TAS_Taipei--Tap_Water_Musuem_Group-min.jpg" alt="test" id="group"> </div>
+
                         <div class="image_container col-lg-10 col-lg-offset-1">  
                        <div class="image_container col-lg-6"> <img src="https://static.igem.org/mediawiki/2017/f/fd/T--TAS_Taipei--Tap_Water_Musuem-min.jpg" alt="test" id="group"> </div>
+
                            <video controls="" class="col-lg-12">
                    </div>
+
                                <source src="https://static.igem.org/mediawiki/2017/1/13/T--TAS_Taipei--PR_Video.mp4" type="video/mp4"> Your browser does not support the video
                    <div class="row" id="researchers">
+
                            </video>
                         <h1 class="title2 col-lg-12">Nanoparticle and Wastewater experts</h1>
+
                            <h4 class="subtitle"><b> Video 5-1 Testing PR bacteria in simulated aeration tanks.</b> Three tanks were setup: PR <i>E. coli</i> + distilled water (right), PR <i>E. coli</i> + CC-AgNP (middle), or CC-AgNP solution alone (left). The contents were mixed for 5 hours to simulate the conditions in an aeration tank. Then, we stopped the rotor and added the flocculant powder used by Dihua WWTP to each tank. In the CC-AgNP cylinder, adding flocculants did not have any effect, suggesting that current wastewater treatment practices cannot remove NPs. In the cylinders containing PR bacteria, however, aggregated materials (including bacteria) settled to the bottom of the cylinder as expected. We observed that the aggregated PR bacteria + CC-AgNPs mixture was orange, indicating the presence of CC-AgNPs. <span class="subCred">Experiment & Video: Justin Y.</span></h4>
                     </div>
+
                         </div>
                     <div class="row" id="#eric">
+
                     </div><br>
                         <h1 class="section-title col-lg-12">Dr. Eric Lee</h1>
+
                     <div class="row" id="biofilm">
 +
                         <h1 class="title2 col-lg-12">BIOFILM CONSIDERATIONS</h1>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-9"> Before we started to conduct experiments, we emailed Dr. Eric P. Lee, senior member of technical staff at Maxim Integrated, and TAS alumnus, to ask him some general questions about our approach of our project. We told him about our two approaches, one with <i>E. coli</i> receptors that bind to the capping agents of nanoparticles, the other with biofilm that traps nanoparticles. Dr. Lee suggested that our membrane receptor must be specific to a particular capping agent. He also commented that the biofilm approach was a good idea since we could trap multiple types of nanoparticles regardless of their capping agent. (Interviewed by Emily C.) </h4>
+
                         <h4 class="para col-lg-12"> To achieve our goal of applying biofilms in WWTPs, we need to inform WWTP managers on the amount of biofilm necessary to trap their desired amount of NPs. Thus, we devised two experiments to investigate the effect of 1) biofilm volume and 2) biofilm surface area on NP trapping; the results of these experiments were incorporated into our model. (Learn more about modeling <a href="https://2017.igem.org/Team:TAS_Taipei/Model">here</a>!)
                        <div class="image_container col-lg-3"> <img src="https://static.igem.org/mediawiki/2017/4/48/T--TAS_Taipei--Doctors6.png" alt="test" id="group"> </div>
+
</h4>
 
                     </div>
 
                     </div>
                     <div class="row" id="roam">
+
                     <div class="row" id="volume">
                         <h1 class="section-title col-lg-12">Dr. Gwo-Dong Roam</h1>
+
                         <h1 class="section-title col-lg-12">Volume Does Not Affect NP Trapping</h1>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> We interviewed Professor Roam of National Central University and former general director of the Environmental Analysis Labs (EAL) of the Taiwan Environmental Protection Agency to learn more about the background and potential threat of nanoparticles. Dr. Roam informed us that the most common nanoparticles used in Taiwan include: TiO2, ZnO, Ag, Au, Fe, Carbon Nanotubes, Fullerenes, Clay, and Graphene. He also told us that the toxicity of a nanoparticle is directly related to its size, but there are currently no regulations or guidelines that specify the toxicity of different types and sizes of nanoparticle. With the increased use of nanoparticles in society, Dr. Roam believes that more attention should be placed on waste management, risk assessment and regulations. </h4>
+
                         <h4 class="para col-lg-7"> To test the effects of biofilm volume, <i>E. coli</i> biofilms were grown, extracted, and washed as described in the <a href="https://goo.gl/Q69wZS">Experimental</a> page. These tests were performed with Gold NPs (AuNPs). Because AuNP solution is purple in color, we can take absorbance measurements and convert these values to AuNP concentration using a standard curve (figure 5-5A). 10 mL of AuNP solution was added to different volumes of biofilm (figure 5-5B). The containers were shaken at 100 rpm overnight to maximize interaction between the biofilm and AuNPs. Finally, the mixtures were transferred to conical tubes and centrifuged to isolate the supernatant, which contains free AuNPs quantifiable using a spectrophotometer set at 527 nm. <br><br>
                    </div>
+
                         Adding more than 1 mL of biofilm to the same amount of AuNP solution did not trap more AuNPs (figure 5-5C). We observed that 1 mL of biofilm was just enough to fully cover the bottom of the container. Since only the top of the biofilm directly contacted the AuNP solution, increasing biofilm volume beyond 1 mL simply increased the depth and not the contact area between biofilm and AuNPs. Therefore, <b>we concluded that biofilm volume is not a main factor determining NP removal. </b>
                    <div class="row">
+
                        </h4>
                         <h4 class="para col-lg-12"> After our first visit to the Dihua WWTP, we learned that the sludge removed from wastewater is either 1) sent to landfills, 2) used as fertilizer, or 3) incinerated. We asked Dr. Roam if sludge containing aggregated nanoparticles would still be harmful to the environment if disposed of using current methods. He said that all of these sludge disposal solutions are still harmful to the environment, but they are still better than letting nanoparticles flow into bodies of water. He advised us to target removal of nanoparticles in the wastewater treatment process before it is discharged. (Interviewed by Candice L. and Justin Y.) </h4>
+
                         <div class="image_container col-lg-5">
                    </div>
+
                            <img src="https://static.igem.org/mediawiki/2017/8/89/T--TAS_Taipei--Volume_trial-min.jpg" alt="test" id="group">
                    <div class="row">
+
                             <h4 class="subtitle"><b>Figure 5-5 Biofilm volume does not affect NP trapping. </b> A) AuNP standard curve relates absorbance and molar concentration. B) Different amounts of biofilm were added to same amount of AuNP solution. C) Increasing biofilm volume beyond 1 mL does not increase NP removal. <span class="subCred">Experiment: Yvonne W.</span></h4>
                         <div class="image_container col-lg-5 col-md-offset-1"> <img src="https://static.igem.org/mediawiki/2017/0/0d/T--TAS_Taipei--Roam-min.jpg" alt="test" id="group">
+
                             <h4 class="subtitle">Professor Gwo-Dong Roam (left) of National Central University and former general director of the Environmental Analysis Labs (EAL) of Taiwan EPA.<span class="subCred"></span></h4>
+
                        </div>
+
                        <div class="image_container col-lg-5"> <img src="https://static.igem.org/mediawiki/2017/4/46/T--TAS_Taipei--Roam_Info-min.jpg" alt="test" id="group">
+
                            <h4 class="subtitle">Materials that Dr. Roam provided the team with.<span class="subCred"></span></h4>
+
 
                         </div>
 
                         </div>
                    </div>
 
                    <div class="row" id="EPA">
 
                        <h1 class="section-title col-lg-12">Thomas J. Brown</h1>
 
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> Thomas J. Brown, the Water Program Specialist of the Pennsylvania Department of Environmental Protection (DEP) occasionally helps with the Boswell Wastewater Treatment Plant. He has also worked with the EPA in Taiwan on wastewater treatments. We interviewed Mr. Brown about our methods to clean nanoparticles in wastewater treatment plants and how to achieve our goal of implementation. With his expertise in the field of wastewater treatment, he provided us some suggestions as to how we could turn our project into reality. </h4>
+
                          
                     </div>
+
                     </div><br>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> For example, we asked him if there were differences between rural and urban plants that we should take into consideration when thinking about implementing our project. He responded that the biological processes used for treatment remains the same regardless of facility size. This helped us think about and design our final prototype, which can potentially be used in both rural and urban treatment plants. </h4>
+
                         <h4 class="para col-lg-12">  
 +
                        </h4>
 
                     </div>
 
                     </div>
                    <div class="row"> <a href="https://static.igem.org/mediawiki/2017/1/15/T--TAS_Taipei--TomBrownResponse.pdf" type="button" class="btn btn-info col-lg-4 col-lg-offset-4"> Click here to see Tom Brown’s full response </a> </div>
+
                     <div class="row" id="SA">
                    <div class="row" id="NPManu">
+
                         <h1 class="section-title col-lg-12">Surface Area Affects NP Trapping</h1>
                        <h1 class="title2 col-lg-12">Nanoparticle Manufacturers and Disposal Services</h1>
+
                    </div>
+
                     <div class="row" id="apex">
+
                         <h1 class="section-title col-lg-12">Apex Nanotek</h1>
+
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-8"> To learn more about the applications of nanoparticles, we visited a nanotech company that uses silver nanoparticles to make various antimicrobial products. The researcher and manager of Apex Nanotek, Chery Yang, introduced us to their main product, which is antimicrobial nanosilver activated carbon. Pure activated carbon, commonly used to treat sewage and industrial exhaust, is prone to bacterial growth. To overcome this problem, they integrate crystallized nanosilver into the activated carbon for their antimicrobial effects. One of their products is a showerhead, with nanosilver activated carbon filters to kill bacteria when water flows through the showerhead. <br><br> We tested the product by comparing SEM images between tap water and filtered water from the showerhead. The showerhead decreased the number of bacteria and larger particles from tap water! However, we also observed the release of nanoparticles from the filter, which will flow into wastewater. (Interviewed by Christine C., Kelly C., Yvonne W., Chansie Y., and Justin Y.) </h4>
+
                         <h4 class="para col-lg-12"> Next, we tested the effects of surface area on NP removal. Similar to the previous experiment, biofilms were extracted and washed. Two experimental groups were set up in different sized cylinders, with either a small (~1.5 cm<sup>2</sup>) or big (~9 cm<sup>2</sup>) base area (figure 5-6A). The bottom 0.5 cm of each container was covered by biofilm, then 10 mL of AuNP solution was added. In this case, the depth of biofilm is consistent, so the contact area between AuNPs and biofilm is equal to the area of the container’s base. All containers were shaken at 100 rpm at room temperature. Every hour (for a total of five hours), one replicate from each group was centrifuged and the absorbance of free AuNPs in the supernatant was measured at 527 nm.
                        <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/0/07/T--TAS_Taipei--Group_Pic_Apex-min.jpg" alt="test" id="group">
+
                         </h4>
                            <h4 class="subtitle">Chery Yang (third person from the left), the main researcher of Apex Nanotek Corporation<span class="subCred"></span></h4>
+
                         </div>
+
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/b/b3/T--TAS_Taipei--Shower_Head-min.jpg" alt="test" id="group">
+
                         <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/5/50/T--TAS_Taipei--SA_new.jpg" alt="test" id="group">
                            <h4 class="subtitle">Product of Apex Nanotek: Silver Spring Shower Head.<span class="subCred"></span></h4>
+
                             <h4 class="subtitle"><b>Figure 5-6 Increasing NP-biofilm contact area increases NP removal. </b> A) Different sized cylinders were used to change NP-biofilm contact area. B) AuNPs were trapped much faster in the large container with a greater biofilm surface area. <span class="subCred">Experiment: Justin P., Florence L., Yvonne W.</span></h4>
                        </div>
+
                        <div class="image_container_big col-lg-8"> <img src="https://static.igem.org/mediawiki/2017/1/1e/T--TAS_Taipei--SEM_comparison_Tap_vs._Showerhead.png" alt="test" id="group2">
+
                             <h4 class="subtitle"><b>Figure 1-3 Tap water under SEM.</b><span class="subCred"></span></h4>
+
 
                         </div>
 
                         </div>
 
                     </div><br>
 
                     </div><br>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> The image on the left shows a tap water sample under the SEM, in which we observed some bacteria (round objects that are approximately 1 μm in diameter). The SEM image on the left shows water that was filtered by the showerhead from Apex nanotek. There is less bacteria as the showerhead uses embedded nanosilver antibacterial filters. (SEM images: Christine C. and Florence L.) </h4>
+
                         <h4 class="para col-lg-12"> We observed that <b>AuNPs were trapped much faster in the large container with a greater biofilm surface area</b> (figure 5-6B). This experiment informed our modeling team that the surface area of biofilm is the main factor that affects NP removal. (Learn more about it <a href="https://2017.igem.org/Team:TAS_Taipei/Model">here!</a>)</h4>
 
                     </div>
 
                     </div>
                     <div class="row" id="theps">
+
                     <div class="row" id="prototype">
                         <h1 class="section-title col-lg-12">THEPS Environmental Protection Engineering Company (中港環保工程股份有限公司)</h1>
+
                         <h1 class="title2 col-lg-12">BIOFILM PROTOTYPE</h1>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> We contacted the company that removes our nanoparticle waste because we wanted to know what happens when it leaves our lab. They directed us to National Cheng Kung university who actually treats the waste for them. The university uses chemicals and burning to aggregate nanoparticles. Through literature research, we discovered that burning nanoparticles is the most prevalent way for removal, however it is not 100% effective at removing all types of nanomaterials (Marr et. al. 2013). (Interviewed by Katherine H, Audrey T. and Christine C.) </h4>
+
                         <h4 class="para col-lg-12"> <b>Our goal is to design a prototype that 1) maximizes the contact area between biofilm and NPs, and 2) can be easily implemented in existing WWTP infrastructure. </b> </h4>
 
                     </div>
 
                     </div>
                     <div class="row" id="public">
+
                     <div class="row" id="max">
                        <h1 class="title2 col-lg-12">Public Opinion</h1>
+
                         <h1 class="section-title col-lg-12">Maximize NP-Biofilm Contact Area</h1>
                    </div>
+
                    <div class="row" id="survey">
+
                         <h1 class="section-title col-lg-12">Survey Results</h1>
+
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> We created a survey that helped us identify public knowledge and misconceptions about synthetic biology and nanoparticle usage. Over 240 people completed the survey. (Survey created by Abby H., Christine C. and Emily C.) <br><br> Here are some results from our survey: <br><br> <u>General Questions</u> <br><br>
+
                         <h4 class="para col-lg-12"> Some aquariums already utilize biofilms grown on plastic structures called <i>biocarriers</i> for water purification. Commercial biocarriers use various ridges, blades, and hollow structures to maximize surface area available for biofilm attachment (figure 5-7A). With that in mind, we <b> designed and 3D-printed plastic (polylactic acid, or PLA) prototypes with many radiating blades to maximize the area available for biofilm attachment</b> (figure 5-7B). We used PLA because it was readily available for printing and easy to work with, allowing us to quickly transition from constructing to testing our prototype.  
                            <ul>
+
                                <li>The majority of people think that gene modification is acceptable if the goal is to save or improve quality of life; however, it is not acceptable for non-medical related reasons, such as changing hair or eye color. In addition, most people do not have a preference between chemical or biological drug synthesis. <i>These results suggest that people are accepting of genetic engineering when it is related to health and medicine.</i></li>
+
                                <li>Environmentally, people are generally concerned with the wastewater that enters the ocean and the river. <i>This gives weight to our project, because the quality of water is an important concern for the general public.</i></li>
+
                            </ul>
+
 
                         </h4>
 
                         </h4>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/9/97/T--TAS_Taipei--general_questionsPic.JPG" alt="test" id="group">
+
                         <div class="image_container col-lg-8 col-lg-offset-2"> <img src="https://static.igem.org/mediawiki/2017/d/db/T--TAS_Taipei--biocarriers.jpg" alt="test" id="group">
                             <h4 class="subtitle"><b>Two examples of general questions from our survey.</b> (<b>Left</b>) 87% (201 out of 243 total responses) think that genes should be modified if the goal is to save or improve quality of life. (<b>Right</b>) 96.7% of the people surveyed care about the quality of wastewater (236 out of 244 total responses).<span class="subCred">Figure: Christine C.</span></h4>
+
                             <h4 class="subtitle"><b>Figure 5-7 Biocarriers enable biofilm attachment. </b> A) An example of commercial biocarriers. B) We 3D-printed our prototype to maximize surface area for biofilm attachment. C) We observed biofilms loosely attached onto our prototype. <span class="subCred">Prototype: Candice L., Yvonne W. Experiment: Yvonne W.</span></h4>
 
                         </div>
 
                         </div>
 
                     </div><br>
 
                     </div><br>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> <u>Project-Specific Questions</u>
+
                         <h4 class="para col-lg-12"> To test how well biofilms actually adhere and develop on our prototypes, we used BBa_K2229300 liquid cultures, since they produced the most biofilm in previous tests. After an incubation period, <b>we observed biofilm growth and attachment to our prototypes</b> (figure 5-7C).
                            <ul>
+
                                <li>The majority of people have heard of nanoparticles and know that nanoparticles are used in consumer products; however, they do not know <i>why</i> nanoparticles are used.</li>
+
                                <li>Most people believe that the government and nanoparticle manufacturers should share responsibility for the regulation of nanoparticle usage and disposal.</li>
+
                            </ul>
+
 
                         </h4>
 
                         </h4>
 
                     </div>
 
                     </div>
                    <div class="row">
+
             
                        <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/9/9e/T--TAS_Taipei--project_specific-new.JPG" alt="test" id="group">
+
                     <div class="row" id="infra">
                            <h4 class="subtitle"><b>Two examples of project-specific questions from our survey.</b> (<b>Left</b>) A majority of the people we asked (58.6%) do not know why nanoparticles are used in consumer products (143 out of 244 total responses). (<b>Right</b>) People believe that nanoparticle manufacturers and the government (including WWTPs) are most responsible for the regulation of nanoparticle usage and disposal. <span class="subCred">Figure: Christine C.</span></h4>
+
                         <h1 class="section-title col-lg-12">Maximize Adaptability to Existing Infrastructure</h1>
                        </div>
+
                    </div><br>
+
                    <div class="row">
+
                        <h4 class="para col-lg-4"> Click to see all survey results: </h4> <a href="https://static.igem.org/mediawiki/2017/b/b9/T--TAS_Taipei--general_questions.pdf" type="button" class="btn btn-info col-lg-3"> General Questions </a> <a href="https://static.igem.org/mediawiki/2017/3/32/T--TAS_Taipei--project_specific.pdf" type="button" class="btn btn-info col-lg-3 col-lg-offset-1"> Project Specific </a> </div>
+
                     <div class="row" id="bioethics">
+
                         <h1 class="section-title col-lg-12">Bioethics Panel</h1>
+
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> We hosted a Bioethics Panel, where we invited students and teachers to discuss the moral, social and environmental concerns of our project. To encourage participants to consider the problems from multiple perspectives, we created a role-playing game and assigned different roles to participants. We then asked for their opinions on nanoparticle usage and disposal from the perspective of their assigned role. (Whole team activity) <br><br> For instance, one of our questions was: <br><br> “Dihua WWTP has no nanoparticle removal plan. Should this be the job of the wastewater plant? Or the nanoparticle manufacturer?” <br><br> The following roles were assigned:
+
                         <h4 class="para col-lg-12"> <b>We would like to implement our prototype in secondary sedimentation tanks in existing WWTPs.</b> The water in this step is relatively calm compared to aeration tanks, which will help keep biofilm structures intact. In addition, larger particles in wastewater would already be filtered out, which maximizes NP removal. The director of Boswell’s WWTP told us that most sedimentation tanks use devices called surface skimmers, which constantly rotate around a central axle, to remove oils; we envision attaching our prototype to the same central axle. In WWTPs that do not have a central rotor in the sedimentation tank, a motor and rod could be easily installed. The slow rotation would keep biofilm structure intact while at the same time, increase the amount of NPs that come into contact with our biofilm.  
                            <ul>
+
 
                                <li>Wastewater plant manager </li>
+
                                <li>Nanoparticle manufacturer </li>
+
                                <li>Citizen</li>
+
                                <li>Fisherman</li>
+
                                <li>Fish</li>
+
                            </ul>
+
 
                         </h4>
 
                         </h4>
 
                     </div>
 
                     </div>
                     <div class="row">
+
                     <div class="row" id="WWTPModel">
                         <div class="para col-lg-12"> Most of the wastewater plant managers thought that nanoparticle manufacturers should be responsible for removing nanoparticles, because they have more information (e.g., solubility, toxicity, etc.) about their own products. <b>However, many other participants were skeptical that manufacturers could be trusted to remove their own contamination and agreed that WWTPs should ultimately be responsible for cleaning water contaminated with nanoparticles.</b> </div>
+
                         <h1 class="section-title col-lg-12">Applying Biofilm in a WWTP Model</h1>
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <div class="para col-lg-12"> This activity gave us great insight on how the public perceives nanoparticle usage and regulation in society. This also gave us a chance to talk to people about both the benefits and the dangers of using nanoparticles. </div>
+
                         <h4 class="para col-lg-7"> After we experimentally demonstrated that biofilms trap NPs, we wanted to <b>test biofilms under conditions similar to a WWTP sedimentation tank</b>. Based on Boswell’s circular tank design, we built our own “sedimentation tanks” using clear plastic tubes, and attached biocarriers to a central spinning rotor. Three cylinders were set up: biofilm + distilled water, biofilm + AuNP, and AuNP solution alone. Here, we decided to grow biofilm directly onto biocarriers in the cylinders to minimize any disturbances. Finally, we turned on the rotor—set at a slow rotation speed—to simulate the mild movement of water in sedimentation tanks. <br><br>
                    </div>
+
In this simulation, we expected to see biofilms first attach and grow on the biocarriers, and then begin trapping NPs in the tanks. After about 30 hours of mixing, <b>the color of the AuNP solution started to change from purple to clear in the cylinder containing biofilm</b> (figure 5-8). This suggested that enough biofilm had adhered onto the biocarrier and began removing AuNPs in the solution. In contrast, the cylinder containing only AuNP solution did not change at all (video 5-2). As the biofilm-coated biocarrier removed AuNPs from solution, we also observed more purple aggregates of AuNP sticking to the rotating biofilm biocarrier. Here, <b>we have demonstrated that our biofilm approach effectively removes NPs in a WWTP sedimentation tank model</b>.
                    <div class="row"> <a href="https://static.igem.org/mediawiki/2017/7/76/T--TAS_Taipei--bioethics_panel_results_pdf.pdf" type="button" class="btn btn-info col-lg-6 col-lg-offset-3"> Click here to see the compiled results from all participants </a> </div>
+
                         </h4>
                    <div class="row">
+
                         <div class="image_container col-lg-5"> <img src="https://static.igem.org/mediawiki/2017/1/16/T--TAS_Taipei--Biofilm_vid_fig.jpg" alt="test" id="group">
                        <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/9/97/T--TAS_Taipei--general_questionsPic.JPG" alt="test" id="group"> </div>
+
                            <h4 class="subtitle"><b>Figure 5-8 Biofilms effectively remove NPs in a simulated sedimentation tank. </b> After about 30 hours of mixing, the color of the AuNP solution started to change from purple to clear (blue asterisk) in the cylinder containing biofilm. <span class="subCred">Prototype & Experiment: Yvonne W., Justin Y.
                    </div>
+
</span></h4>
                    <div class="row" id="Impact">
+
                        <h1 class="title2 col-lg-12">IMPACT</h1>
+
                    </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> Even though we can’t implement our project in an actual wastewater treatment system, we still wanted to make a difference! We decided on two areas where we could make an immediate impact: 1) Creating an policy brief to highlight current obstacles in effective nanoparticle regulation and propose new policy solutions, and 2) Raising funds for two organizations that promote environmental protection. </h4>
+
                    </div>
+
                    <div class="row" id="policy">
+
                        <h1 class="section-title col-lg-12">Policy Brief -- Nanoparticle Regulation Issues and Case Studies</h1>
+
                    </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> Our team has conducted extensive research on existing regulatory laws and policies regarding nanoparticles and nanomaterials. We have investigated chemical regulations, including the Restriction, Evaluation, Authorization, and Restriction of Chemicals (REACH), A Toxic Substances Control Act (TCSA), CLP, and the Clean Air Act (CAA). There are significant obstacles to successfully regulating nanoparticles, such as conflicting definitions on nanoparticles that lead to an inability to successfully regulate manufacturers. Research has also been conducted on the hazardous effects of nanoparticles on the human body and environment. We decided to compose a policy brief highlighting the existing challenges in nanoparticle regulation and the lessons learned from previous failure to regulate new chemical substances. The brief was sent out to regulatory agencies, government agencies, and news outlets to raise awareness about the issue. We feel responsible to let others know about the damage nanoparticle waste can do to the environment. (Policy Brief created by Ashley L.) </h4>
+
                    </div>
+
                    <div class="row"> <a href="https://static.igem.org/mediawiki/2017/0/0c/T--TAS_Taipei--policy_brief_pdf.pdf" type="button" class="btn btn-info col-lg-4 col-lg-offset-4"> Click here to read our policy brief! </a> </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-9"> We sent this policy brief to the <b>Environmental Protection Administration (EPA) minister in Taiwan</b>, and they responded! They read our policy brief and said that they will take it into consideration when they make policy regulations on the use of nanoparticles in the future. They understand that nanotechnology is still developing and definitely needs more attention and regulation. (Correspondence: Christine C.) </h4>
+
                        <div class="image_container col-lg-3"> <img src="https://static.igem.org/mediawiki/2017/9/95/T--TAS_Taipei--%E6%9D%8E%E6%87%89%E5%85%83.JPG" alt="test" id="group"> </div>
+
                    </div>
+
                    <div class="row"> <a href="https://static.igem.org/mediawiki/2017/6/6f/T--TAS_Taipei--EPAResponse.pdf" type="button" class="btn btn-info col-lg-4 col-lg-offset-4"> Click to see his reply! </a> </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> We were interviewed by <b>News Lens International</b> about nanoparticle regulation. Many of the questions focused on why we chose to target nanoparticles and how nanoparticles are dealt with in Taiwan. We emphasized that the lack of regulatory legislation prevents agencies from acquiring regulatory power. We also talked about the lack of nanoparticle filtration in wastewater treatment plants. (Interviewed by Ashley L.) </h4>
+
                    </div>
+
                    <div class="row"> <a href="https://international.thenewslens.com/article/80829" type="button" class="btn btn-info col-lg-4 col-lg-offset-4"> View the article here </a> </div>
+
                    <div class="row" id="fund">
+
                        <h1 class="section-title col-lg-12">Fundraising and Donation</h1>
+
                    </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> We held multiple fundraising sales, selling small ice cream dots (resembling nanoparticles!) and Oreo fudge during our lunch periods in school, and making “glitter slime” at our school’s annual spring fair (see Spring Fair in the Outreach section above). (Team activity) <br><br>In total, we raised around 500 USD, and donated the money to two organizations: </h4>
+
                    </div>
+
                    <div class="row">
+
                        <div class="image_container col-lg-3"> <img src="https://static.igem.org/mediawiki/2017/6/6a/T--TAS_Taipei--WaterIsLife.png" alt="test" id="group"> </div>
+
                    </div><br>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> WaterisLife is an organization that provides clean drinking water, as well as sanitation and hygiene education programs to schools and communities in need. We donated to this organization in hopes that more people will have access to clean water. Visit WaterisLife <a href="http://waterislife.com/">here</a>. </h4>
+
                    </div>
+
                    <div class="row">
+
                        <div class="image_container col-lg-3"> <img src="https://static.igem.org/mediawiki/2017/9/96/T--TAS_Taipei--TEPU.gif" alt="test" id="group"> </div>
+
                    </div><br>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> Taiwan Environmental Protection Union (TEPU) is a local organization founded in 1987 to promote public awareness and participation to prevent pollution and damage to public resources. Visit TEPU <a href="http://www.tepu.org.tw/?page_id=4975">here</a>. </h4>
+
                    </div>
+
                    <div class="row" id="Outreach">
+
                        <h1 class="title2 col-lg-12">OUTREACH</h1>
+
                    </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12">In Outreach, we raised awareness of the beneficial qualities and harmful consequences associated with nanoparticles. We also educated the general public about nanoparticle usage, synthetic biology, and science in general. Lastly, we communicated with other iGEM teams to share ideas and collaborate on experiments. </h4>
+
                    </div>
+
                    <div class="row" id="education">
+
                        <h1 class="title2 col-lg-12">Education</h1>
+
                    </div>
+
                    <div class="row" id="kindergarten">
+
                        <h1 class="section-title col-lg-12">Kindergarten -- Observing the “invisible”</h1>
+
                    </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> Our iGEM team hosted over 120 kindergarten students to teach them the power of observation and the basics of science. For example, we taught them how to use microscopes to look at anti-counterfeiting measures on paper money and how to use refraction lenses to see that white light is made up of various colors. (Whole Team activity) </h4>
+
                    </div>
+
                    <div class="row">
+
                         <div class="image_container col-lg-5 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/7/73/T--TAS_Taipei--Kindergarten-Group.jpg" alt="test" id="group"> </div>
+
                         <div class="image_container col-lg-5"> <img src="https://static.igem.org/mediawiki/2017/5/59/T--TAS_Taipei--Kindergarten-AS.jpg" alt="test" id="group"> </div>
+
                    </div>
+
                    <div class="row" id="seventhGrade">
+
                        <h1 class="section-title col-lg-12">7th Grade Introduction to Synthetic Biology</h1>
+
                    </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-8"> We introduced iGEM and the basics of synthetic biology to all 200+ students in the seventh grade. They learned how to use micropipettes, as well as how to load and run dyes through an agarose gel. We also gave students different real world problems. Using paper biobrick parts, students put together constructs that would solve the given problems. (Whole Team activity) </h4>
+
                        <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/e/e1/T-TAS_Taipei--HP-7-1.jpg" alt="test" id="group"> </div>
+
                    </div>
+
                    <div class="row">
+
                        <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/d/dc/T-TAS_Taipei--HP-7-2.jpg" alt="test" id="group"> </div>
+
                        <div class="image_container_big col-lg-8"> <img src="https://static.igem.org/mediawiki/2017/3/38/T--TAS_Taipei--HP_Jumbo.jpg" alt="test" id="group2"> </div>
+
                    </div>
+
                    <div class="row" id="Fair">
+
                        <h1 class="section-title col-lg-12">Spring Fair -- Spreading Public Awareness of Nanoparticles</h1>
+
                    </div>
+
                    <div class="row">
+
                        <h4 class="para col-lg-12"> At our school’s annual spring fair, we manned a booth where people could create their own glitter slime by mixing polyvinyl alcohol and sodium borate solutions. The slime was meant to simulate the biofilm we use to trap nanoparticles (in this demo, glitter) in wastewater treatment plants. We also showed a few SEM images of bacteria, as well as everyday products that contain nanoparticles such as toothpaste and sunscreen. Everyone who came by our booth was encouraged to take our survey so we could record opinions on bioethics and concerns about nanoparticles. (Whole team activity) </h4>
+
                    </div>
+
                    <div class="row">
+
                        <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/5/53/T--TAS_Taipei--Spring_Fair-min.jpg" alt="test" id="group">
+
                            <h4 class="subtitle">iGEM Slime booth at Spring Fair along with the iPad surveys set up next to the tables.</h4>
+
 
                         </div>
 
                         </div>
                        <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/6/61/T--TAS_Taipei--Spring_Fair_Sage-min.jpg" alt="test" id="group"> </div>
 
                        <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/a/a4/T--TAS_Taipei--Spring_Fair_NP-min.jpg" alt="test" id="group">
 
                            <h4 class="subtitle">SEM images that show nanoparticles in daily products (ex: toothpaste and sunscreen)</h4>
 
                        </div>
 
                    </div>
 
                    <div class="row" id="symposium">
 
                        <h1 class="section-title col-lg-12">Research Symposium -- Poster and Oral Presentations</h1>
 
                    </div>
 
                    <div class="row">
 
                        <h4 class="para col-lg-12"> At TAS we conduct research symposiums twice a year to showcase the research of students who take a variety of research courses. Before we decided our project topic, we developed 4 different project ideas to present at our first research symposium (poster session). We received feedback from both students and teachers, then decided on our current project. At our second research symposium, we presented on our current project, Nanotrap! (Presenters: Candice L., William C., Chansie Y., Christine C., Yvonne, W., Justin Y., Dylan L., and Catherine Y.) </h4>
 
                    </div>
 
                    <div class="row">
 
                        <div class="image_container_big col-lg-8 col-lg-offset-2"> <img src="https://static.igem.org/mediawiki/2017/c/c3/T--TAS_Taipei--Symposium-min.jpg" alt="test" id="group"> </div>
 
                    </div>
 
                    <div class="row" id="NCTU">
 
                        <h1 class="section-title col-lg-12">5th Annual Asia-Pacific iGEM Conference -- NCTU</h1>
 
                    </div>
 
                    <div class="row">
 
                        <h4 class="para col-lg-12"> In preparation for the Giant Jamboree, we attended the 5th annual Asia-Pacific iGEM conference at NCTU to share and receive valuable feedback from other college and high school teams in Taiwan. This event allowed us to consider different aspects of our project using feedback from other teams. (Presenters: William C., Yvonne W., and Justin Y.) </h4>
 
                    </div>
 
                    <div class="row">
 
                        <div class="image_container col-lg-6"> <img src="https://static.igem.org/mediawiki/2017/a/a8/T--TAS_Taipei--NCTU1.JPG" alt="test" id="group"> </div>
 
                        <div class="image_container col-lg-6"> <img src="https://static.igem.org/mediawiki/2017/e/ed/T--TAS_Taipei--NCTU2.JPG" alt="test" id="group"> </div>
 
                    </div>
 
                    <div class="row" id="pubView">
 
                        <h1 class="section-title col-lg-12">Public Outreach -- A Tour of Taipei</h1>
 
                    </div>
 
                    <div class="row">
 
                        <h4 class="para col-lg-8"> Some members of the iGEM team went to various popular sites in Taipei to pass out fliers and conduct surveys. We visited National Taiwan University, Chiang Kai-Shek Memorial Hall, and Taipei 101. This helped us collect feedback from different age groups and backgrounds. This was a great and fun way to spread awareness of nanoparticle pollution! (Team members: Ashley L., Emily C., Florence L., Candice L., Yvonne W., Justin Y., Avery W., Christine C., Jesse K., and Laurent H.) </h4>
 
                        <div class="image_container col-lg-4"> <img src="https://static.igem.org/mediawiki/2017/f/f9/T--TAS_Taipei--Survey_Trip_Gran-min.jpg" alt="test" id="group"> </div>
 
 
                     </div><br>
 
                     </div><br>
 
                     <div class="row">
 
                     <div class="row">
                        <h4 class="para col-lg-12"> Here's a video we made for this event. </h4>
+
                    <div class="image_container col-lg-10 col-lg-offset-1">  
                    </div><br>
+
                        <video controls="" class="col-lg-12">
                    <div class="row"> <video controls="" class="col-lg-10 col-lg-offset-1"> <source src="https://static.igem.org/mediawiki/2017/4/4b/T--TAS_Taipei--Final_Video.mp4" type="video/mp4"> Your browser does not support the video tag. </video> </div>
+
                            <source src="https://static.igem.org/mediawiki/2017/7/75/T--TAS_Taipei--Biofilm_Video.mp4" type="video/mp4"> Your browser does not support the video tag.
                    <div class="row" id="collab">
+
                        </video>
                        <h1 class="title2 col-lg-12">Collaborations</h1>
+
                    <h4 class="subtitle"><b> Video 5-2 Testing biofilm in simulated sedimentation tanks.</b> Based on Boswell’s circular tank design, we built our own “sedimentation tanks” using clear plastic tubes, and attached biocarriers to a central spinning rotor. Three tanks were set up: biofilm + distilled water (right), biofilm + AuNP (middle), and AuNP solution alone (left). After about 30 hours of mixing, the color of the AuNP solution started to change from purple to clear in the cylinder containing biofilm. In contrast, the cylinder containing only AuNP solution did not change at all. Timelapse video shows the tanks 36 hours after the start. <span class="subCred">Experiment & Video: Yvonne W.</span></h4>
 
                     </div>
 
                     </div>
                    <div class="row" id="NYMU">
 
                        <h1 class="section-title col-lg-12">NYMU_TAIPEI</h1>
 
                    </div>
 
                    <div class="row">
 
                        <h4 class="para col-lg-12"> Lorem ipsum dolor sit amet, consectetur adipisicing elit. Quidem officia sit amet omnis deleniti veritatis ut. Placeat reprehenderit quas in non a quidem vitae aspernatur, nihil vero pariatur rerum nobis est eum, minima aliquid neque quaerat quibusdam quis. Repellendus neque voluptas reiciendis, id dolorum, asperiores dolores debitis libero autem quibusdam. </h4>
 
                    </div>
 
                    <div class="row" id="CGU">
 
                        <h1 class="section-title col-lg-12">CGU_Taiwan</h1>
 
                    </div>
 
                    <div class="row">
 
                        <h4 class="para col-lg-12"> We first met the CGU_Taiwan team at the end of our presentation for the 5th Annual Asia Pacific iGEM Conference hosted in National Chiao Tung University (NCTU). They were excited that our biofilms were able to trap nanoparticles and wanted to know whether they might trap ink particles as well. We offered to test this for CGU_Taiwan. <br><br> CGU_Taiwan also helped us independently test biofilm production using a different dye, crystal violet. Their results verified that overexpression of OmpR234 (BBa_K2229200) produces more biofilm than control (BBa_K342003). </h4>
 
                    </div>
 
                    <div class="row">
 
                        <div class="image_container col-lg-10 col-lg-offset-1"> <img src="https://static.igem.org/mediawiki/2017/7/70/T--TAS_Taipei--figure_3-18.jpg" alt="test" id="group">
 
                            <h4 class="subtitle"><b>A)</b> Our experimental results showed that <i>E. coli</i> overexpressing OmpR234 (BBa_K2229200) produces more biofilm than a control which does not express OmpR234 (BBa_K342003). <b>B)</b> CGU_Taiwan independently tested our constructs using crystal violet, a dye commonly used to quantify biofilm formation. BBa_K2229200 showed higher absorbance compared to the control BBa_K342003, reflecting the formation of more biofilm, which matches our results.</h4>
 
                        </div>
 
 
                     </div><br>
 
                     </div><br>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> Human Practices Text Written by Christine C., Candice L., Emily C., Justin Y. Edited by advisors Jude Clapper and Teresa Chiang. </h4>
+
                         <h4 class="para col-lg-12"> *Details on any experimental setup can be found in the Prototype and Modeling sections of our <a href="https://2017.igem.org/Team:TAS_Taipei/Notebook">lab notebook.</a>
 +
                        </h4>
 
                     </div>
 
                     </div>
 
                     <div class="row" id="ref">
 
                     <div class="row" id="ref">
Line 453: Line 308:
 
                     </div>
 
                     </div>
 
                     <div class="row">
 
                     <div class="row">
                         <h4 class="para col-lg-12"> Ahamed, M., Alsalhi, M. S., & Siddiqui, M. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta,411(23-24), 1841-1848. doi:10.1016/j.cca.2010.08.016 <br><br> Marr, L. C., & Holder, A. L. (2013). Nanomaterial disposal by incineration. Environmental Science: Processes & Impacts, 15(9), 1652-1664. https://doi.org/10.1039/C3EM00224A </h4>
+
                         <h4 class="para col-lg-12"> Davis, Peter S. “The Biological Basis of Wastewater Treatment.” s-Can.nl, 2005, www.s-can.nl/media/1000154/thebiologicalbasisofwastewatertreatment.pdf.<br><br>
 +
Fattahi, S., Kafil, H. S., Nahai, M. R., Asgharzadeh, M., Nori, R., & Aghazadeh, M. (2015). Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran. GMS Hygiene and Infection Control, 10, Doc11. http://doi.org/10.3205/dgkh000254<br><br>
 +
Mueller, N. C., & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447-4453. doi:10.1021/es7029637
 +
<br><br>
 +
Malik, O. (2014, January 22). Primary vs. Secondary: Types of Wastewater Treatment. Retrieved October 12, 2017, from http://archive.epi.yale.edu/case-study/primary-vs-secondary-types-wastewater-treatment<br><br>
 +
Pescod, M. (1992). Wastewater treatment and use in agriculture (Vol. 47). Rome: United Nations.
 +
Vert, M., Doi, Y., Hellwich, K., et al. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), pp. 377-410. Retrieved 9 Oct. 2017, from doi:10.1351/PAC-REC-10-12-04
 +
</h4>
 
                     </div>
 
                     </div>
                </section>
 
            </div>
 
        </div>
 
    </div>
 
    </div>
 
 
     <script>
 
     <script>
 
         $("a").on('click', function(event) {
 
         $("a").on('click', function(event) {
Line 648: Line 505:
 
             });
 
             });
 
         })
 
         })
 
 
     </script>
 
     </script>
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 03:47, 3 December 2017

X

Project

Experiment

Modeling

Prototype

Human Practice

Safety

About Us

Attributions

Home

Prototype

Design, Build, and Test: Putting our project to work

test

PROTOTYPE

It is estimated that about 95% of nanoparticles (NPs) used in consumer products end up in wastewater (Mueller & Nowack. 2008). Our goal is to apply our biofilm and Proteorhodopsin (PR) bacteria in wastewater treatment plants (WWTPs) to remove most NPs before the effluent is released into the environment.

WASTEWATER TREATMENT

What is the process?

test

Figure 5-1 Typical wastewater treatment process. Figure: Yvonne W.


When wastewater enters a plant, the first step is to remove coarse solids and large materials using a grit screen (figure 5-1). The water can then be processed in three main stages: Primary, Secondary, and sometimes Tertiary Treatment (Pescod 1992). In Primary Treatment, heavy solids are removed by sedimentation while floating materials (such as oils) can be taken out by skimming. However, dissolved materials and colloids—small, evenly dispersed solids such as NPs—are not removed here (Pescod 1992). Secondary Treatment generally involves the use of aeration tanks, where aerobic microbes help to break down organic materials. This is also known as the activated sludge process (Davis 2005). In a subsequent sedimentation step, the microbes are removed and the effluent is disinfected (often by chlorine or UV) before it is released into the environment. In certain WWTPs, wastewater may go through Tertiary Treatment, an advanced process typically aimed to remove nitrogen and phosphorous, and assumed to produce an effluent free of viruses (Pescod 1992). However, Tertiary Treatment requires additional infrastructure that is expensive and complex, limiting its global usage (Pescod 1992; Malik 2014).

Ideally, we would like to remove NPs from all systems, so we visited two different types of WWTPs: a local urban facility in Dihua, Taipei, and a smaller rural facility in Boswell, Pennsylvania. We found that wastewater in the two plants is treated using very similar processes (figures 5-2 and 5-3). We also contacted Thomas J. Brown, the Water Program Specialist of the Pennsylvania Department of Environmental Protection, and asked him if there were differences between rural and urban plants that we should consider when thinking about implementing our project. He responded, “[t]he heart of the treatment process is the biological process used for treatment; the biology remains the same regardless of facility size.” Thus, in both types of WWTPs, we want to apply our engineered bacteria in the Secondary Treatment step—either in aeration tanks or in the sedimentation tank.

test

Figure 5-2 Dihua WWTP sewage process. Figure: Christine C.



test

Figure 5-3 Boswell WWTP sewage process. Figure: Christine C.


Biosafety

We used a safe and common lab strain of E. coli, K-12, as our chassis (Environmental Protection Agency 1977). In both approaches, our constructs do not express proteins associated with virulence: PR is a transmembrane protein that commonly exists in marine bacteria, and for biofilm production we were careful to avoid known virulence factors such as alpha hemolysins (Fattahi et al. 2015). Most importantly, biosafety is built into WWTPs. Before treated effluent is released back into the environment, it must go through a final disinfection step, where chlorine, ozone, or UV radiation are used to kill microbes still present in the wastewater (Pescod 1992).

PR CONSIDERATIONS

During our visit to Dihua WWTP, the chief engineer informed us that they use the activated sludge process, which uses aerobic microbes to digest organic matter in aeration tanks. The steady influx and mixing of air provide oxygen favorable to aerobic microbes; the turbulent water also increases the probability of PR binding to citrate-capped NPs (CC-NPs). Thus, we envision directly adding PR E. coli into existing aeration tanks. In addition, as part of the activated sludge process, WWTPs regularly cycle microbe-rich sludge back into aeration tanks to maintain the microbial population (figure 5-1). Ideally, this would stabilize the PR bacterial population in aeration tanks, allowing this system to be low-maintenance and easily adaptable to existing infrastructure.

To facilitate the application of PR bacteria in WWTPs, our modeling team created a calculator that informs WWTP managers the amount of PR bacteria they need to trap their desired amount of CC-NPs based on our experimental results and the conditions of their WWTP. Learn more about PR experimentsand modeling!


Applying PR in a WWTP Model

After we experimentally demonstrated that PR binds to CC-NPs, we wanted to test PR bacteria under conditions similar to a WWTP aeration tank. To learn more about those specific conditions, we visited and talked to engineers at Dihua WWTP, our local urban facility. At Dihua, wastewater is retained in aeration tanks for up to 5 hours, and a central rotor constantly churns the wastewater. To simulate these conditions, we built our own “aeration tank” using clear cylinders and a central rotor. Then, we set up three groups in separate aeration tanks: PR E. coli + distilled water, PR E. coli + CC-AgNP, or CC-AgNP solution alone (figure 5-4A). Finally, we turned on the rotor and churned the mixture for 5 hours.

In WWTPs, aeration tanks lead to secondary sedimentation tanks (figure 5-2), where flocculants—polymers that aggregate suspended solids—are added to accelerate sedimentation. During our visit to Dihua WWTP, the engineers gave us samples of their flocculants. After 5 hours of mixing, we stopped the rotor and added the flocculant powder used by Dihua WWTP to each tank (video 5-1). In the CC-AgNP cylinder, adding flocculants did not have any effect (figure 5-4B and C), suggesting that current wastewater treatment practices cannot remove NPs. In the cylinders containing PR bacteria, however, aggregated materials (including bacteria) settled to the bottom of the cylinder as expected (figure 5-4B). We then centrifuged the contents of each cylinder, and observed that the pellet of the PR bacteria + CC-AgNPs mixture was orange, reflecting the presence of aggregated CC-AgNPs (figure 5-4C). In this WWTP aeration tank simulation, we show that PR bacteria pulls down CC-AgNPs.

test

Figure 5-4 Applying PR in a WWTP model. A) Three groups were setup and churned for 5 hours: PR bacteria + distilled water, PR bacteria + CC-AgNPs, and CC-AgNPs + distilled water. B) After 5 hours, flocculants were added and aggregated materials settled to the bottom. C) We then centrifuged the contents of each cylinder, and observed that the pellet of the PR bacteria + CC-AgNPs mixture was orange, reflecting the presence of aggregated CC-AgNPs. Experiment & Figure: Justin Y.


Video 5-1 Testing PR bacteria in simulated aeration tanks. Three tanks were setup: PR E. coli + distilled water (right), PR E. coli + CC-AgNP (middle), or CC-AgNP solution alone (left). The contents were mixed for 5 hours to simulate the conditions in an aeration tank. Then, we stopped the rotor and added the flocculant powder used by Dihua WWTP to each tank. In the CC-AgNP cylinder, adding flocculants did not have any effect, suggesting that current wastewater treatment practices cannot remove NPs. In the cylinders containing PR bacteria, however, aggregated materials (including bacteria) settled to the bottom of the cylinder as expected. We observed that the aggregated PR bacteria + CC-AgNPs mixture was orange, indicating the presence of CC-AgNPs. Experiment & Video: Justin Y.


BIOFILM CONSIDERATIONS

To achieve our goal of applying biofilms in WWTPs, we need to inform WWTP managers on the amount of biofilm necessary to trap their desired amount of NPs. Thus, we devised two experiments to investigate the effect of 1) biofilm volume and 2) biofilm surface area on NP trapping; the results of these experiments were incorporated into our model. (Learn more about modeling here!)

Volume Does Not Affect NP Trapping

To test the effects of biofilm volume, E. coli biofilms were grown, extracted, and washed as described in the Experimental page. These tests were performed with Gold NPs (AuNPs). Because AuNP solution is purple in color, we can take absorbance measurements and convert these values to AuNP concentration using a standard curve (figure 5-5A). 10 mL of AuNP solution was added to different volumes of biofilm (figure 5-5B). The containers were shaken at 100 rpm overnight to maximize interaction between the biofilm and AuNPs. Finally, the mixtures were transferred to conical tubes and centrifuged to isolate the supernatant, which contains free AuNPs quantifiable using a spectrophotometer set at 527 nm.

Adding more than 1 mL of biofilm to the same amount of AuNP solution did not trap more AuNPs (figure 5-5C). We observed that 1 mL of biofilm was just enough to fully cover the bottom of the container. Since only the top of the biofilm directly contacted the AuNP solution, increasing biofilm volume beyond 1 mL simply increased the depth and not the contact area between biofilm and AuNPs. Therefore, we concluded that biofilm volume is not a main factor determining NP removal.

test

Figure 5-5 Biofilm volume does not affect NP trapping. A) AuNP standard curve relates absorbance and molar concentration. B) Different amounts of biofilm were added to same amount of AuNP solution. C) Increasing biofilm volume beyond 1 mL does not increase NP removal. Experiment: Yvonne W.


Surface Area Affects NP Trapping

Next, we tested the effects of surface area on NP removal. Similar to the previous experiment, biofilms were extracted and washed. Two experimental groups were set up in different sized cylinders, with either a small (~1.5 cm2) or big (~9 cm2) base area (figure 5-6A). The bottom 0.5 cm of each container was covered by biofilm, then 10 mL of AuNP solution was added. In this case, the depth of biofilm is consistent, so the contact area between AuNPs and biofilm is equal to the area of the container’s base. All containers were shaken at 100 rpm at room temperature. Every hour (for a total of five hours), one replicate from each group was centrifuged and the absorbance of free AuNPs in the supernatant was measured at 527 nm.

test

Figure 5-6 Increasing NP-biofilm contact area increases NP removal. A) Different sized cylinders were used to change NP-biofilm contact area. B) AuNPs were trapped much faster in the large container with a greater biofilm surface area. Experiment: Justin P., Florence L., Yvonne W.


We observed that AuNPs were trapped much faster in the large container with a greater biofilm surface area (figure 5-6B). This experiment informed our modeling team that the surface area of biofilm is the main factor that affects NP removal. (Learn more about it here!)

BIOFILM PROTOTYPE

Our goal is to design a prototype that 1) maximizes the contact area between biofilm and NPs, and 2) can be easily implemented in existing WWTP infrastructure.

Maximize NP-Biofilm Contact Area

Some aquariums already utilize biofilms grown on plastic structures called biocarriers for water purification. Commercial biocarriers use various ridges, blades, and hollow structures to maximize surface area available for biofilm attachment (figure 5-7A). With that in mind, we designed and 3D-printed plastic (polylactic acid, or PLA) prototypes with many radiating blades to maximize the area available for biofilm attachment (figure 5-7B). We used PLA because it was readily available for printing and easy to work with, allowing us to quickly transition from constructing to testing our prototype.

test

Figure 5-7 Biocarriers enable biofilm attachment. A) An example of commercial biocarriers. B) We 3D-printed our prototype to maximize surface area for biofilm attachment. C) We observed biofilms loosely attached onto our prototype. Prototype: Candice L., Yvonne W. Experiment: Yvonne W.


To test how well biofilms actually adhere and develop on our prototypes, we used BBa_K2229300 liquid cultures, since they produced the most biofilm in previous tests. After an incubation period, we observed biofilm growth and attachment to our prototypes (figure 5-7C).

Maximize Adaptability to Existing Infrastructure

We would like to implement our prototype in secondary sedimentation tanks in existing WWTPs. The water in this step is relatively calm compared to aeration tanks, which will help keep biofilm structures intact. In addition, larger particles in wastewater would already be filtered out, which maximizes NP removal. The director of Boswell’s WWTP told us that most sedimentation tanks use devices called surface skimmers, which constantly rotate around a central axle, to remove oils; we envision attaching our prototype to the same central axle. In WWTPs that do not have a central rotor in the sedimentation tank, a motor and rod could be easily installed. The slow rotation would keep biofilm structure intact while at the same time, increase the amount of NPs that come into contact with our biofilm.

Applying Biofilm in a WWTP Model

After we experimentally demonstrated that biofilms trap NPs, we wanted to test biofilms under conditions similar to a WWTP sedimentation tank. Based on Boswell’s circular tank design, we built our own “sedimentation tanks” using clear plastic tubes, and attached biocarriers to a central spinning rotor. Three cylinders were set up: biofilm + distilled water, biofilm + AuNP, and AuNP solution alone. Here, we decided to grow biofilm directly onto biocarriers in the cylinders to minimize any disturbances. Finally, we turned on the rotor—set at a slow rotation speed—to simulate the mild movement of water in sedimentation tanks.

In this simulation, we expected to see biofilms first attach and grow on the biocarriers, and then begin trapping NPs in the tanks. After about 30 hours of mixing, the color of the AuNP solution started to change from purple to clear in the cylinder containing biofilm (figure 5-8). This suggested that enough biofilm had adhered onto the biocarrier and began removing AuNPs in the solution. In contrast, the cylinder containing only AuNP solution did not change at all (video 5-2). As the biofilm-coated biocarrier removed AuNPs from solution, we also observed more purple aggregates of AuNP sticking to the rotating biofilm biocarrier. Here, we have demonstrated that our biofilm approach effectively removes NPs in a WWTP sedimentation tank model.

test

Figure 5-8 Biofilms effectively remove NPs in a simulated sedimentation tank. After about 30 hours of mixing, the color of the AuNP solution started to change from purple to clear (blue asterisk) in the cylinder containing biofilm. Prototype & Experiment: Yvonne W., Justin Y.


Video 5-2 Testing biofilm in simulated sedimentation tanks. Based on Boswell’s circular tank design, we built our own “sedimentation tanks” using clear plastic tubes, and attached biocarriers to a central spinning rotor. Three tanks were set up: biofilm + distilled water (right), biofilm + AuNP (middle), and AuNP solution alone (left). After about 30 hours of mixing, the color of the AuNP solution started to change from purple to clear in the cylinder containing biofilm. In contrast, the cylinder containing only AuNP solution did not change at all. Timelapse video shows the tanks 36 hours after the start. Experiment & Video: Yvonne W.


*Details on any experimental setup can be found in the Prototype and Modeling sections of our lab notebook.

REFERENCES

Davis, Peter S. “The Biological Basis of Wastewater Treatment.” s-Can.nl, 2005, www.s-can.nl/media/1000154/thebiologicalbasisofwastewatertreatment.pdf.

Fattahi, S., Kafil, H. S., Nahai, M. R., Asgharzadeh, M., Nori, R., & Aghazadeh, M. (2015). Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran. GMS Hygiene and Infection Control, 10, Doc11. http://doi.org/10.3205/dgkh000254

Mueller, N. C., & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447-4453. doi:10.1021/es7029637

Malik, O. (2014, January 22). Primary vs. Secondary: Types of Wastewater Treatment. Retrieved October 12, 2017, from http://archive.epi.yale.edu/case-study/primary-vs-secondary-types-wastewater-treatment

Pescod, M. (1992). Wastewater treatment and use in agriculture (Vol. 47). Rome: United Nations. Vert, M., Doi, Y., Hellwich, K., et al. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), pp. 377-410. Retrieved 9 Oct. 2017, from doi:10.1351/PAC-REC-10-12-04