JustInTime (Talk | contribs) |
JustInTime (Talk | contribs) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 123: | Line 123: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <h4 class="para col-lg-12">It is estimated that about 95% of nanoparticles (NPs) used in consumer products end up in wastewater (<i> | + | <h4 class="para col-lg-12">It is estimated that about 95% of nanoparticles (NPs) used in consumer products end up in wastewater (<i>Mueller & Nowack.</i> 2008). <b>Our goal is to apply our biofilm and Proteorhodopsin (PR) bacteria in wastewater treatment plants (WWTPs) to remove most NPs</b> before the effluent is released into the environment. </h4> |
</div> | </div> | ||
<div class="row this_border"></div> | <div class="row this_border"></div> | ||
Line 182: | Line 182: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <h4 class="para col-lg-12"> To facilitate the application of PR bacteria in WWTPs, our modeling team created a calculator that informs WWTP managers the amount of PR bacteria they need to trap their desired amount of CC-NPs based on our experimental results and the conditions of their WWTP. Learn more about PR <a href="https://goo.gl/gu91Wj"><b>experiments</b></a>and <a href="https://goo.gl/ac2Qji"><b>modeling</b></a> | + | <h4 class="para col-lg-12"> To facilitate the application of PR bacteria in WWTPs, our modeling team created a calculator that informs WWTP managers the amount of PR bacteria they need to trap their desired amount of CC-NPs based on our experimental results and the conditions of their WWTP. Learn more about PR <a href="https://goo.gl/gu91Wj"><b>experiments</b></a>and <a href="https://goo.gl/ac2Qji"><b>modeling!</b></a></h4> |
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
Line 212: | Line 212: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <h4 class="para col-lg-12"> To achieve our goal of applying biofilms in WWTPs, we need to inform WWTP managers on the amount of biofilm necessary to trap their desired amount of NPs. Thus, we devised two experiments to investigate the effect of 1) biofilm volume and 2) biofilm surface area on NP trapping; the results of these experiments were incorporated into our model. (Learn more about modeling <a href= | + | <h4 class="para col-lg-12"> To achieve our goal of applying biofilms in WWTPs, we need to inform WWTP managers on the amount of biofilm necessary to trap their desired amount of NPs. Thus, we devised two experiments to investigate the effect of 1) biofilm volume and 2) biofilm surface area on NP trapping; the results of these experiments were incorporated into our model. (Learn more about modeling <a href="https://2017.igem.org/Team:TAS_Taipei/Model">here</a>!) |
</h4> | </h4> | ||
</div> | </div> | ||
Line 219: | Line 219: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <h4 class="para col-lg-7"> To test the effects of biofilm volume, <i>E. coli</i> biofilms were grown, extracted, and washed as described in the <a href= | + | <h4 class="para col-lg-7"> To test the effects of biofilm volume, <i>E. coli</i> biofilms were grown, extracted, and washed as described in the <a href="https://goo.gl/Q69wZS">Experimental</a> page. These tests were performed with Gold NPs (AuNPs). Because AuNP solution is purple in color, we can take absorbance measurements and convert these values to AuNP concentration using a standard curve (figure 5-5A). 10 mL of AuNP solution was added to different volumes of biofilm (figure 5-5B). The containers were shaken at 100 rpm overnight to maximize interaction between the biofilm and AuNPs. Finally, the mixtures were transferred to conical tubes and centrifuged to isolate the supernatant, which contains free AuNPs quantifiable using a spectrophotometer set at 527 nm. <br><br> |
Adding more than 1 mL of biofilm to the same amount of AuNP solution did not trap more AuNPs (figure 5-5C). We observed that 1 mL of biofilm was just enough to fully cover the bottom of the container. Since only the top of the biofilm directly contacted the AuNP solution, increasing biofilm volume beyond 1 mL simply increased the depth and not the contact area between biofilm and AuNPs. Therefore, <b>we concluded that biofilm volume is not a main factor determining NP removal. </b> | Adding more than 1 mL of biofilm to the same amount of AuNP solution did not trap more AuNPs (figure 5-5C). We observed that 1 mL of biofilm was just enough to fully cover the bottom of the container. Since only the top of the biofilm directly contacted the AuNP solution, increasing biofilm volume beyond 1 mL simply increased the depth and not the contact area between biofilm and AuNPs. Therefore, <b>we concluded that biofilm volume is not a main factor determining NP removal. </b> | ||
</h4> | </h4> | ||
Line 247: | Line 247: | ||
</div><br> | </div><br> | ||
<div class="row"> | <div class="row"> | ||
− | <h4 class="para col-lg-12"> We observed that <b>AuNPs were trapped much faster in the large container with a greater biofilm surface area</b> (figure 5-6B). This experiment informed our modeling team that the surface area of biofilm is the main factor that affects NP removal. (Learn more about it <a href= | + | <h4 class="para col-lg-12"> We observed that <b>AuNPs were trapped much faster in the large container with a greater biofilm surface area</b> (figure 5-6B). This experiment informed our modeling team that the surface area of biofilm is the main factor that affects NP removal. (Learn more about it <a href="https://2017.igem.org/Team:TAS_Taipei/Model">here!</a>)</h4> |
</div> | </div> | ||
<div class="row" id="prototype"> | <div class="row" id="prototype"> | ||
Line 310: | Line 310: | ||
<h4 class="para col-lg-12"> Davis, Peter S. “The Biological Basis of Wastewater Treatment.” s-Can.nl, 2005, www.s-can.nl/media/1000154/thebiologicalbasisofwastewatertreatment.pdf.<br><br> | <h4 class="para col-lg-12"> Davis, Peter S. “The Biological Basis of Wastewater Treatment.” s-Can.nl, 2005, www.s-can.nl/media/1000154/thebiologicalbasisofwastewatertreatment.pdf.<br><br> | ||
Fattahi, S., Kafil, H. S., Nahai, M. R., Asgharzadeh, M., Nori, R., & Aghazadeh, M. (2015). Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran. GMS Hygiene and Infection Control, 10, Doc11. http://doi.org/10.3205/dgkh000254<br><br> | Fattahi, S., Kafil, H. S., Nahai, M. R., Asgharzadeh, M., Nori, R., & Aghazadeh, M. (2015). Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran. GMS Hygiene and Infection Control, 10, Doc11. http://doi.org/10.3205/dgkh000254<br><br> | ||
− | + | Mueller, N. C., & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447-4453. doi:10.1021/es7029637 | |
+ | <br><br> | ||
Malik, O. (2014, January 22). Primary vs. Secondary: Types of Wastewater Treatment. Retrieved October 12, 2017, from http://archive.epi.yale.edu/case-study/primary-vs-secondary-types-wastewater-treatment<br><br> | Malik, O. (2014, January 22). Primary vs. Secondary: Types of Wastewater Treatment. Retrieved October 12, 2017, from http://archive.epi.yale.edu/case-study/primary-vs-secondary-types-wastewater-treatment<br><br> | ||
Pescod, M. (1992). Wastewater treatment and use in agriculture (Vol. 47). Rome: United Nations. | Pescod, M. (1992). Wastewater treatment and use in agriculture (Vol. 47). Rome: United Nations. |
Latest revision as of 03:47, 3 December 2017