Difference between revisions of "Team:ZJU-China/Model"

 
(19 intermediate revisions by the same user not shown)
Line 240: Line 240:
 
     /*文中自定义*/
 
     /*文中自定义*/
 
     .CuteButton:active {
 
     .CuteButton:active {
         -webkit-box-shadow: 0px 3px 0px rgba(0, 52, 63, 1), 0px 3px 6px rgba(0, 0, 0, .9);
+
        color:white !important;
         -moz-box-shadow: 0px 3px 0px rgba(0, 52, 63, 1), 0px 3px 6px rgba(0, 0, 0, .9);
+
        -webkit-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9);
         box-shadow: 0px 3px 0px rgba(0, 52, 63, 1), 0px 3px 6px rgba(0, 0, 0, .9);
+
        -moz-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9);
 +
        box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9);
 +
        position: relative;
 +
        top: 6px;
 +
    }
 +
 
 +
    .CuteButton:visited {
 +
        color:white !important;
 +
         -webkit-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9);
 +
         -moz-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9);
 +
         box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9);
 
         position: relative;
 
         position: relative;
 
         top: 6px;
 
         top: 6px;
Line 378: Line 388:
 
         font-weight: 100 !important;
 
         font-weight: 100 !important;
 
         text-align: left !important;
 
         text-align: left !important;
 +
    }
 +
 +
    .codes
 +
    {
 +
 +
        display: table;
 +
        font-family:Consolas !important;
 +
        /*border: solid #E1E1E8 !important;*/
 +
        /*background-color: #F7F7F9 !important;*/
 +
        /*width:auto !important;*/
 
     }
 
     }
  
Line 387: Line 407:
 
<!-- Docs master nav -->
 
<!-- Docs master nav -->
 
<!-- <h1><a class="navbar-brand" href="index.html">MuMei Lab</a></h1> -->
 
<!-- <h1><a class="navbar-brand" href="index.html">MuMei Lab</a></h1> -->
 +
    <div class="container">
 +
      <!-- header -->
 +
      <div class="header-w3layouts">
 +
          <!-- Navigation -->
 +
          <nav class="navbar navbar-default navbar-fixed-top">
 +
              <div class="navbar-header page-scroll">
 +
                  <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-ex1-collapse">
 +
                  </button>
  
 +
                  <a href="https://2017.igem.org/Team:ZJU-China">
 +
                      <img style="margin-top:11px" class="navbar-brand"  src="https://static.igem.org/mediawiki/2017/d/d5/ZJUChina_logo.png">
 +
                  </a>
  
<div class="container">
+
                  <!-- <h1><a class="navbar-brand" href="index.html">My Design</a></h1> -->
    <!-- header -->
+
    <div class="header-w3layouts">
+
        <!-- Navigation -->
+
        <nav class="navbar navbar-default navbar-fixed-top">
+
            <div class="navbar-header page-scroll">
+
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-ex1-collapse">
+
                </button>
+
  
                <a href="https://2017.igem.org/Team:ZJU-China">
+
              </div>
                    <img style="margin-top:11px" class="navbar-brand" src="https://static.igem.org/mediawiki/2017/d/d5/ZJUChina_logo.png">
+
              <!-- Collect the nav links, forms, and other content for toggling -->
                </a>
+
              <div class="collapse navbar-collapse navbar-ex1-collapse">
 +
                  <ul class="nav navbar-nav navbar-right cl-effect-15">
 +
                      <!-- Hidden li included to remove active class from about link when scrolled up past about section -->
 +
                      <li class="hidden"><a class="page-scroll" href="#page-top"></a> </li>
  
                <!-- <h1><a class="navbar-brand" href="index.html">My Design</a></h1> -->
+
                      <li class="m_nav_item dropdown">
 +
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Overview<b class="caret"></b></a>
 +
                          <ul class="dropdown-menu ">
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Overview">Description</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Demonstrate">Demonstrate</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Applied_Design">Applied Design</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Achievements">Achievements</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Improve">Improve Parts</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/InterLab">InterLab</a></li>
  
            </div>
+
                          </ul>
            <!-- Collect the nav links, forms, and other content for toggling -->
+
                      </li>
            <div class="collapse navbar-collapse navbar-ex1-collapse">
+
                <ul class="nav navbar-nav navbar-right cl-effect-15">
+
                    <!-- Hidden li included to remove active class from about link when scrolled up past about section -->
+
                    <li class="hidden"><a class="page-scroll" href="#page-top"></a> </li>
+
  
                    <li class="m_nav_item dropdown">
+
                      <li class="m_nav_item dropdown">
                        <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Overview<b class="caret"></b></a>
+
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Project<b class="caret"></b></a>
                        <ul class="dropdown-menu ">
+
                          <ul class="dropdown-menu ">
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Overview">Project Description</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Project/tp">Trichoderma Proof</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Achievements">Achievements</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Project/voc">VOC sensors</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/InterLab">InterLab</a></li>
+
                              <li><a style="font-size: 0.7em!important;" href="https://2017.igem.org/Team:ZJU-China/Project/st">Chemical Signal Transduction</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/ImproveParts">Improve Parts</a></li>
+
                              <li><a style="font-size: 0.7em!important;" href="https://2017.igem.org/Team:ZJU-China/Project/mt">Medium Wave Transduction</a></li>
                        </ul>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Project/Downstream">Downstream</a></li>
                    </li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Project/conclusion">Conclusions</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Notebook">Notebook</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Protocols">Protocols</a></li>
 +
                          </ul>
 +
                      </li>
  
                    <li class="m_nav_item dropdown">
+
                      <li class="m_nav_item dropdown" >
                        <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Project<b class="caret"></b></a>
+
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Model<b class="caret"></b></a>
                        <ul class="dropdown-menu ">
+
                          <ul class="dropdown-menu ">
                            <!--<li><a href="https://2017.igem.org/Team:ZJU-China/Project">Project Home</a></li>-->
+
                              <!--<li><a href="https://2017.igem.org/Team:ZJU-China/Model">Summery</a></li>-->
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Project/tp">Trichoderma Proof</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Model">VOC analysis</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Project/voc">VOC sensors</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Model/Coculture">Coculture</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Project/st">Signal Transduction</a></li>
+
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Project/ms">Mat Synthesis</a></li>
+
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Project/conclusion">Conclusion</a></li>
+
                            <!--<li><a href="https://2017.igem.org/Team:ZJU-China/Project/improvement">Improvement</a></li>-->
+
                            <!--<li><a href="https://2017.igem.org/Team:ZJU-China/InterLab">Interlab</a></li>-->
+
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Notebook">Notebook</a></li>
+
                        </ul>
+
                    </li>
+
  
                    <li class="m_nav_item dropdown" >
+
                          </ul>
                        <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Modelling<b class="caret"></b></a>
+
                      </li>
                        <ul class="dropdown-menu ">
+
                            <!--<li><a href="https://2017.igem.org/Team:ZJU-China/Model">Summery</a></li>-->
+
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Model">Coculture</a></li>
+
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Model/VOC">VOC analysis</a></li>
+
  
                        </ul>
+
                      <li class="m_nav_item dropdown">
                    </li>
+
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Parts<b class="caret"></b></a>
 +
                          <ul class="dropdown-menu ">
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Parts">All Parts</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Basic_Part">Basic Parts</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Composite_Part">Composite Parts</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Part_Collection">Part Collection</a></li>
  
                    <li class="m_nav_item dropdown">
 
                        <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Parts<b class="caret"></b></a>
 
                        <ul class="dropdown-menu ">
 
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Parts">All Parts</a></li>
 
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Parts/Basic">Basic Parts</a></li>
 
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Parts/Composite">Composite Parts</a></li>
 
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Parts/Collection">Parts Collection</a></li>
 
                        </ul>
 
                    </li>
 
  
                    <li><a href="https://2017.igem.org/Team:ZJU-China/Hardware">Hardware</a></li>
 
  
                    <li class="m_nav_item dropdown" >
 
                        <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Safety<b class="caret"></b></a>
 
                        <ul class="dropdown-menu ">
 
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Safety">Environment</a></li>
 
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Safety/Lab">Laboratory</a></li>
 
                        </ul>
 
                    </li>
 
  
                    <li><a href="https://2017.igem.org/Team:ZJU-China/HP/Collaborations">Collaborations</a></li>
+
                          </ul>
 +
                      </li>
  
                    <li class="m_nav_item dropdown">
+
                      <li class="m_nav_item dropdown" >
                        <a href="#" class="dropdown-toggle link" data-toggle="dropdown">HP<b class="caret"></b></a>
+
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Hardware<b class="caret"></b></a>
                        <ul class="dropdown-menu ">
+
                          <ul class="dropdown-menu ">
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Human_Practices">Summary</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Hardware">Overview</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/HP/Silver">Silver</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Hardware/Device">Device</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/HP/Gold_Integrated">Gold</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Hardware/Improvements">Improvements</a></li>
                        </ul>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Hardware/MediumWave">Medium Wave</a></li>
                    </li>
+
                          </ul>
 +
                      </li>
  
                    <li class="m_nav_item dropdown" >
+
                      <li class="m_nav_item dropdown" >
                        <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Team<b class="caret"></b></a>
+
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Safety<b class="caret"></b></a>
                        <ul class="dropdown-menu ">
+
                          <ul class="dropdown-menu ">
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Team">Teammates</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Safety">Environment</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Attributions">Attribution</a></li>
+
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Safety/Lab">Laboratory</a></li>
                            <li><a href="https://2017.igem.org/Team:ZJU-China/Collaborations">Collaboration</a></li>
+
                          </ul>
                        </ul>
+
                      </li>
                    </li>
+
 
 +
                      <li class="m_nav_item dropdown">
 +
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">HP<b class="caret"></b></a>
 +
                          <ul class="dropdown-menu ">
 +
 
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Human_Practices">Summary</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/HP/Silver">Silver</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/HP/Gold_Integrated">Gold Integrated</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Engagement">Engagement</a></li>
 +
                          </ul>
 +
                      </li>
 +
 
 +
                      <li class="m_nav_item dropdown" >
 +
                          <a href="#" class="dropdown-toggle link" data-toggle="dropdown">Team<b class="caret"></b></a>
 +
                          <ul class="dropdown-menu ">
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Team">Teammates</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Attributions">Attribution</a></li>
 +
                              <li><a href="https://2017.igem.org/Team:ZJU-China/Collaborations">Collaboration</a></li>
 +
                          </ul>
 +
                      </li>
 +
                  </ul>
 +
              </div>
 +
          </nav>
 +
      </div>
 +
  </div>
  
                </ul>
 
            </div>
 
        </nav>
 
    </div>
 
</div>
 
  
  
 
<p></p>
 
<p></p>
 
<div style="margin-top:0;padding-top:0">
 
<div style="margin-top:0;padding-top:0">
     <img src="https://static.igem.org/mediawiki/2017/b/be/ZJUChina_interlab_banner.jpg" width="100%">
+
     <img src="https://static.igem.org/mediawiki/2017/2/2d/ZJU_China_Model_head.jpg" width="100%">
 
     <!-- <img src="images/HP_temp/banner.jpg" width="100%"> -->
 
     <!-- <img src="images/HP_temp/banner.jpg" width="100%"> -->
 
</div>
 
</div>
  
  
<div style="background-color: #FFFAF0;width: 100%" class="container zjuContent">
+
<div style="width: 100%" class="container zjuContent">
 
     <div class="col-md-3"></div>
 
     <div class="col-md-3"></div>
 
     <div class="col-md-9" role="main">
 
     <div class="col-md-9" role="main">
 
         <div class="bs-docs-section">
 
         <div class="bs-docs-section">
  
             <h1 id="modeling" class="page-header ArticleHead GreenAH">Modeling<hr></h1>
+
             <h1 id="modeling" class="page-header ArticleHead GreenAH">Modeling</h1>
 
                 <h2 id="vocclassification" class="H2Head">VOC Classification</h2>
 
                 <h2 id="vocclassification" class="H2Head">VOC Classification</h2>
 
                     <h3 id="overview" class="H3Head">Overview</h3>
 
                     <h3 id="overview" class="H3Head">Overview</h3>
                         <p class="PP">The VOC device is designed to judge whether the tobacco is heathy or gets infected. Since this is an inquiry experiment, algorithms in data analysis are widely use in our modeling. We do data preprocessing, data analysis, and algorithm optimization on the data collected by VOC device. Finally, we use Logistic regression and detect the infected tobacco with 91% confidence.</p>
+
                         <p class="PP">The VOC device is designed to tell whether the tobacco is heathy or infected. Since this is an inquiry experiment, algorithms in data analysis are widely used in our modeling. We did data preprocessing, data analysis, and algorithm optimization on the data collected by VOC device. Finally, we used Logistic regression and detected the infected tobacco with 91% confidence.</p>
  
 
                     <h3 id="datapreprocessing" class="H3Head">Data preprocessing</h3>
 
                     <h3 id="datapreprocessing" class="H3Head">Data preprocessing</h3>
                         <p class="PP">First we defragment the raw input data, and reorganize them into a matrix. 10 VOC factors are served as features, and the status(heathy or infected) is served as tag to be predicted.</p>
+
                         <p class="PP">First we defragmented the raw input data, and reorganized them into a matrix. 10 VOC factors were served as features, and the status(heathy or infected) was served as a tag to be predicted.</p>
                         <img class="textimg" src='https://static.igem.org/mediawiki/2017/4/49/ZJU_China_VOC_1.png' alt=''/>
+
                         <div class="imgdiv"><img class="textimg" src='https://static.igem.org/mediawiki/2017/4/49/ZJU_China_VOC_1.png' alt=''/></div>
                         <p class="PP">Then we analysis the data using box plot and discover that most data are normal, but some records are singular, whose box plot are show as folowing:</p>
+
                         <p class="PP">Then we analyzed the data using box plot and discovered that most data were normal, but some records were singular, whose box plot is shown as follows:</p>
                         <img class="textimg" src='https://static.igem.org/mediawiki/2017/9/97/ZJU_China_VOC_2.png' alt=''/>
+
                         <div class="imgdiv"><img class="textimg" src='https://static.igem.org/mediawiki/2017/9/97/ZJU_China_VOC_2.png' alt=''/></div>
                         <p class="PP">We remove those records with singular value, and the data left obey normal distribution:</p>
+
                         <p class="PP">We removed those records with singular value, it turned out that the data left obey the normal distribution:</p>
                         <img class="textimg" src='https://static.igem.org/mediawiki/2017/3/32/ZJU_China_VOC_3.png' alt=''/>
+
                         <div class="imgdiv col-md-6 col-sm-6"><img class="textimg" style="height: 230px !important; width:auto !important;" src='https://static.igem.org/mediawiki/2017/3/32/ZJU_China_VOC_3.png' alt=''/></div>
                         <img class="textimg" src='https://static.igem.org/mediawiki/2017/e/e0/ZJU_China_VOC_4.png' alt=''/>
+
                         <div class="imgdiv col-md-6 col-sm-6"><img class="textimg" style="height: 230px !important; width:auto !important;" src='https://static.igem.org/mediawiki/2017/e/e0/ZJU_China_VOC_4.png' alt=''/></div>
  
 
                     <h3 id="dataanalysis" class="H3Head">Data analysis</h3>
 
                     <h3 id="dataanalysis" class="H3Head">Data analysis</h3>
                         <p class="PP">Our target is to create a model and predict tobacco's status according to 10 input features. This is a classic two classification problem, and there are several algrithm to solve it. The sampling algorithm is cross validation and the scoring policy we apply is ridit test.</p>
+
                         <p class="PP">Our target was to create a model to predicted tobacco's status according to 10 input features. This is a classic two classification problem, which we had several algrithm to solve. The sampling algorithm is cross validation and the scoring policy we applied is ridit test</p>
 
                         <p class="PP"><strong>Decision Tree</strong></p>
 
                         <p class="PP"><strong>Decision Tree</strong></p>
                         <p class="PP">First we use decision tree based on information theory. ID3 decision tree is used to reduce the most information gain, and CART tree is used to reduce the GINI index. The performance of these two algorithm is almost the same. <strong>R = 0.83</strong></p>
+
                         <p class="PP">First we used decision tree, which is based on information theory. ID3 decision tree was used to reduce the most information gain, while CART tree was used to reduce the GINI index. The performance of these two algorithm is almost the same. <strong>R = 0.83</strong></p>
  
  
                         <img class="textimg" src='https://static.igem.org/mediawiki/2017/3/30/ZJU_China_VOC_5.png' alt=''/>
+
                         <div class="imgdiv"><img class="textimg" src='https://static.igem.org/mediawiki/2017/3/30/ZJU_China_VOC_5.png' alt=''/></div>
                         <img class="textimg" src='https://static.igem.org/mediawiki/2017/6/61/ZJU_China_VOC_6.png' alt=''/>
+
                         <div class="imgdiv"><img class="textimg" src='https://static.igem.org/mediawiki/2017/6/61/ZJU_China_VOC_6.png' alt=''/></div>
  
 
                     <p class="PP"><strong>MLP</strong></p>
 
                     <p class="PP"><strong>MLP</strong></p>
                         <p class="PP">The second algorithm we apply is Multi-Layer Perception, also called neutral network. In this model, we use more than 100 neurons in each layer and the activation function is relu.</p>
+
                         <p class="PP">The second algorithm we applied is Multi-Layer Perception, also called neural network. In this model, we used more than 100 neurons in each layer and the activation function is relu.</p>
 
                         <p class="PP">The result of MLP is much better than decision tree.<strong>R = 0.89</strong></p>
 
                         <p class="PP">The result of MLP is much better than decision tree.<strong>R = 0.89</strong></p>
  
                         <p><img class="textimg" src='https://static.igem.org/mediawiki/2017/9/91/ZJU_China_VOC_7.png' alt=''/>
+
                         <p><div class="imgdiv"><img class="textimg" src='https://static.igem.org/mediawiki/2017/9/91/ZJU_China_VOC_7.png' alt=''/></div>
 
                         </p>
 
                         </p>
 
                         <p class="PP"><strong>Leaner Model</strong></p>
 
                         <p class="PP"><strong>Leaner Model</strong></p>
                         <p class="PP">Although the performance of MLP has been good enough, it&#39;s difficult to extract konwledge
+
                         <p class="PP">Although the performance of MLP had been good enough, it's difficult to extract konwledge learnt by algorithm, which means the interpretability is weak. Why not try a simple model with high interpretability? First we tried LDA algorithm to compress the 10 dimensions data into 2 dimensions.</p>
                            learn by algorithm, the interpretability is weak. Why don&#39;t we try a simple model with
+
                            high interpretability? First we try LDA algorithm to compress the 10dimensions data into 2 dimensions.</p>
+
 
                         <p class="PP" style="text-align: center !important;"><span class="MathJax_Preview"></span><span class="MathJax_SVG_Display"
 
                         <p class="PP" style="text-align: center !important;"><span class="MathJax_Preview"></span><span class="MathJax_SVG_Display"
 
                                                                       style="text-align: center;"><span
 
                                                                       style="text-align: center;"><span
Line 867: Line 897:
 
                             <script type="math/tex" id="MathJax-Element-9">J</script>
 
                             <script type="math/tex" id="MathJax-Element-9">J</script>
 
                         </p>
 
                         </p>
                         <p class="PP">The result of LDA algorithm is as following and <span class="MathJax_Preview"></span><span
+
                         <p class="PP">The result of LDA algorithm is as follows:<span class="MathJax_Preview"></span><span
 
                                 class="MathJax_SVG" id="MathJax-Element-10-Frame" tabindex="-1"
 
                                 class="MathJax_SVG" id="MathJax-Element-10-Frame" tabindex="-1"
 
                                 style="font-size: 100%; display: inline-block;"><svg
 
                                 style="font-size: 100%; display: inline-block;"><svg
Line 893: Line 923:
 
                             :
 
                             :
 
                         </p>
 
                         </p>
                         <img class="textimg" src='https://static.igem.org/mediawiki/2017/6/61/ZJU_China_VOC_8.png' alt=''/>
+
                         <div class="imgdiv"><img class="textimg" src='https://static.igem.org/mediawiki/2017/6/61/ZJU_China_VOC_8.png' alt=''/></div>
  
                         <p class="PP">This result prove the data are linear separable, then we choose logistics regression
+
                         <p class="PP">This result proved the data are linear separable, which enabled us to chose logistics regression algorithm.</p>
                            algorithm.</p>
+
 
                         <p class="PP">We difine <span class="MathJax_Preview"></span><span class="MathJax_SVG"
 
                         <p class="PP">We difine <span class="MathJax_Preview"></span><span class="MathJax_SVG"
 
                                                                                 id="MathJax-Element-11-Frame"
 
                                                                                 id="MathJax-Element-11-Frame"
Line 973: Line 1,002:
 
                                                                       style="text-align: center;"><span
 
                                                                       style="text-align: center;"><span
 
                                 class="MathJax_SVG" id="MathJax-Element-12-Frame" tabindex="-1"
 
                                 class="MathJax_SVG" id="MathJax-Element-12-Frame" tabindex="-1"
                                 style="font-size: 100%; display: inline-block;"><svg
+
                                 style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="24.797ex" height="6.196ex" viewBox="-38.5 -1710.8 10676.7 2667.7" role="img" focusable="false" style="vertical-align: -2.223ex; margin-left: -0.089ex;"><defs><path stroke-width="1" id="E20-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="1" id="E20-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="1" id="E20-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="1" id="E20-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="1" id="E20-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="1" id="E20-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="1" id="E20-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="1" id="E20-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="1" id="E20-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="1" id="E20-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="1" id="E20-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="1" id="E20-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="1" id="E20-MJMATHI-62" d="M73 647Q73 657 77 670T89 683Q90 683 161 688T234 694Q246 694 246 685T212 542Q204 508 195 472T180 418L176 399Q176 396 182 402Q231 442 283 442Q345 442 383 396T422 280Q422 169 343 79T173 -11Q123 -11 82 27T40 150V159Q40 180 48 217T97 414Q147 611 147 623T109 637Q104 637 101 637H96Q86 637 83 637T76 640T73 647ZM336 325V331Q336 405 275 405Q258 405 240 397T207 376T181 352T163 330L157 322L136 236Q114 150 114 114Q114 66 138 42Q154 26 178 26Q211 26 245 58Q270 81 285 114T318 219Q336 291 336 325Z"></path><path stroke-width="1" id="E20-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E20-MJMATHI-70" x="0" y="0"></use><use xlink:href="#E20-MJMAIN-28" x="503" y="0"></use><use xlink:href="#E20-MJMATHI-79" x="893" y="0"></use><use xlink:href="#E20-MJMAIN-3D" x="1668" y="0"></use><use xlink:href="#E20-MJMAIN-30" x="2724" y="0"></use><use xlink:href="#E20-MJMAIN-7C" x="3225" y="0"></use><use xlink:href="#E20-MJMATHI-78" x="3503" y="0"></use><use xlink:href="#E20-MJMAIN-29" x="4076" y="0"></use><use xlink:href="#E20-MJMAIN-3D" x="4743" y="0"></use><g transform="translate(5521,0)"><g transform="translate(397,0)"><rect stroke="none" width="4598" height="60" x="0" y="220"></rect><g transform="translate(921,676)"><use xlink:href="#E20-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E20-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E20-MJMATHI-54" x="1013" y="513"></use><use transform="scale(0.707)" xlink:href="#E20-MJMATHI-78" x="1314" y="0"></use><use transform="scale(0.707)" xlink:href="#E20-MJMAIN-2B" x="1887" y="0"></use><use transform="scale(0.707)" xlink:href="#E20-MJMATHI-62" x="2665" y="0"></use></g></g><g transform="translate(60,-798)"><use xlink:href="#E20-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E20-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1723,0)"><use xlink:href="#E20-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E20-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E20-MJMATHI-54" x="1013" y="408"></use><use transform="scale(0.707)" xlink:href="#E20-MJMATHI-78" x="1314" y="0"></use><use transform="scale(0.707)" xlink:href="#E20-MJMAIN-2B" x="1887" y="0"></use><use transform="scale(0.707)" xlink:href="#E20-MJMATHI-62" x="2665" y="0"></use></g></g></g></g></g></g></svg></span></span>
                                xmlns:xlink="http://www.w3.org/1999/xlink" width="24.797ex" height="6.259ex"
+
                                viewBox="-38.5 -1724.2 10676.7 2695" role="img" focusable="false"
+
                                style="vertical-align: -2.255ex; margin-left: -0.089ex;"><defs><path stroke-width="1"
+
                                                                                                    id="E12-MJMATHI-70"
+
                                                                                                    d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path
+
                                stroke-width="1" id="E12-MJMAIN-28"
+
                                d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path
+
                                stroke-width="1" id="E12-MJMATHI-79"
+
                                d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path
+
                                stroke-width="1" id="E12-MJMAIN-3D"
+
                                d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path
+
                                stroke-width="1" id="E12-MJMAIN-31"
+
                                d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path
+
                                stroke-width="1" id="E12-MJMAIN-7C"
+
                                d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path
+
                                stroke-width="1" id="E12-MJMATHI-78"
+
                                d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path
+
                                stroke-width="1" id="E12-MJMAIN-29"
+
                                d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path
+
                                stroke-width="1" id="E12-MJMATHI-65"
+
                                d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path
+
                                stroke-width="1" id="E12-MJMATHI-77"
+
                                d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path
+
                                stroke-width="1" id="E12-MJMATHI-54"
+
                                d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path
+
                                stroke-width="1" id="E12-MJMAIN-2B"
+
                                d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path
+
                                stroke-width="1" id="E12-MJMATHI-62"
+
                                d="M73 647Q73 657 77 670T89 683Q90 683 161 688T234 694Q246 694 246 685T212 542Q204 508 195 472T180 418L176 399Q176 396 182 402Q231 442 283 442Q345 442 383 396T422 280Q422 169 343 79T173 -11Q123 -11 82 27T40 150V159Q40 180 48 217T97 414Q147 611 147 623T109 637Q104 637 101 637H96Q86 637 83 637T76 640T73 647ZM336 325V331Q336 405 275 405Q258 405 240 397T207 376T181 352T163 330L157 322L136 236Q114 150 114 114Q114 66 138 42Q154 26 178 26Q211 26 245 58Q270 81 285 114T318 219Q336 291 336 325Z"></path></defs><g
+
                                stroke="currentColor" fill="currentColor" stroke-width="0"
+
                                transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E12-MJMATHI-70" x="0" y="0"></use><use
+
                                xlink:href="#E12-MJMAIN-28" x="503" y="0"></use><use xlink:href="#E12-MJMATHI-79"
+
                                                                                    x="893" y="0"></use><use
+
                                xlink:href="#E12-MJMAIN-3D" x="1668" y="0"></use><use xlink:href="#E12-MJMAIN-31"
+
                                                                                      x="2724" y="0"></use><use
+
                                xlink:href="#E12-MJMAIN-7C" x="3225" y="0"></use><use xlink:href="#E12-MJMATHI-78"
+
                                                                                      x="3503" y="0"></use><use
+
                                xlink:href="#E12-MJMAIN-29" x="4076" y="0"></use><use xlink:href="#E12-MJMAIN-3D"
+
                                                                                      x="4743" y="0"></use><g
+
                                transform="translate(5521,0)"><g transform="translate(397,0)"><rect stroke="none"
+
                                                                                                    width="4598"
+
                                                                                                    height="60" x="0"
+
                                                                                                    y="220"></rect><g
+
                                transform="translate(921,676)"><use xlink:href="#E12-MJMATHI-65" x="0" y="0"></use><g
+
                                transform="translate(466,362)"><use transform="scale(0.707)"
+
                                                                    xlink:href="#E12-MJMATHI-77" x="0" y="0"></use><use
+
                                transform="scale(0.5)" xlink:href="#E12-MJMATHI-54" x="1013" y="513"></use><use
+
                                transform="scale(0.707)" xlink:href="#E12-MJMATHI-78" x="1314" y="0"></use><use
+
                                transform="scale(0.707)" xlink:href="#E12-MJMAIN-2B" x="1887" y="0"></use><use
+
                                transform="scale(0.707)" xlink:href="#E12-MJMATHI-62" x="2665" y="0"></use></g></g><g
+
                                transform="translate(60,-807)"><use xlink:href="#E12-MJMAIN-31" x="0" y="0"></use><use
+
                                xlink:href="#E12-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1723,0)"><use
+
                                xlink:href="#E12-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use
+
                                transform="scale(0.707)" xlink:href="#E12-MJMATHI-77" x="0" y="0"></use><use
+
                                transform="scale(0.5)" xlink:href="#E12-MJMATHI-54" x="1013" y="408"></use><use
+
                                transform="scale(0.707)" xlink:href="#E12-MJMATHI-78" x="1314" y="0"></use><use
+
                                transform="scale(0.707)" xlink:href="#E12-MJMAIN-2B" x="1887" y="0"></use><use
+
                                transform="scale(0.707)" xlink:href="#E12-MJMATHI-62" x="2665" y="0"></use></g></g></g></g></g></g></svg></span></span>
+
 
                             <script type="math/tex; mode=display" id="MathJax-Element-12">
 
                             <script type="math/tex; mode=display" id="MathJax-Element-12">
 
                                 p(y=1|x)=\frac{e^{w^Tx+b}}{1+e^{w^Tx+b}}
 
                                 p(y=1|x)=\frac{e^{w^Tx+b}}{1+e^{w^Tx+b}}
Line 1,171: Line 1,142:
 
                         </p>
 
                         </p>
 
                         <p class="PP">Then we can apply maximum likelihood method algorithm to estimate the paramaters.</p>
 
                         <p class="PP">Then we can apply maximum likelihood method algorithm to estimate the paramaters.</p>
                         <p class="PP">The result is as following:</p>
+
                         <p class="PP">The result is as follows:</p>
                         <figure class="highlight"><pre><code class="language-html" data-lang="html">
+
                         <figure class="codes"><pre>
 
                             Weight:
 
                             Weight:
 
                             [[ 0.1819504 0.38788225 0.01350023 0.39594948 0.17799418
 
                             [[ 0.1819504 0.38788225 0.01350023 0.39594948 0.17799418
Line 1,193: Line 1,164:
 
                             Score:
 
                             Score:
 
                             0.894333333333
 
                             0.894333333333
                         </code></pre></figure>
+
                         </pre></figure>
 
                 <h2 id="algorithmoptimization" class="H2Head">Algorithm optimization</h2>
 
                 <h2 id="algorithmoptimization" class="H2Head">Algorithm optimization</h2>
                 <p class="PP">From the result of logistics regression, factor C and I and etc. are with less important weight,
+
                 <p class="PP">From the result of logistics regression, factor C and I and etc. are with less important weight, these factors may disturb the classifaction. We tried to reduce insigfinicant factors to simplify the model.</p>
                    these factors maybe disturb the classifaction. We try to reduce unimportant factors and simplify the
+
                 <p class="PP">Finally, we reserved 4 factors with which we can predict the tobacco's status with 91% confidence and also reduced the VOC device.</p>
                    model.</p>
+
             <figure class="codes"><pre>
                 <p class="PP">Finally, we reserve 4 factors with which we can predict the tobacco in 91% confidence and also reduce
+
                    the VOC device.</p>
+
             <figure class="highlight"><pre><code class="language-html" data-lang="html">
+
 
                     Weight:
 
                     Weight:
 
                     [[ 0.53196697  0.3404023  -0.53555988 -0.45588715]]
 
                     [[ 0.53196697  0.3404023  -0.53555988 -0.45588715]]
Line 1,213: Line 1,181:
 
                     Score:
 
                     Score:
 
                     0.912444444444
 
                     0.912444444444
                 </code></pre></figure>
+
                 </pre></figure>
                 <img class="textimg" src='https://static.igem.org/mediawiki/2017/7/73/ZJU_China_VOC_9.png' alt=''/>
+
                 <div class="imgdiv"><img class="textimg" src='https://static.igem.org/mediawiki/2017/7/73/ZJU_China_VOC_9.png' alt=''/></div>
  
 
                 <h2 id="summary" class="H2Head">Summary</h2>
 
                 <h2 id="summary" class="H2Head">Summary</h2>
                     <p class="PP">In this model, we try different algorithm to abttain a robust, interpretable, and accurate solution
+
                     <p class="PP">In this model, we tried different algorithm to abttain a robust, interpretable, and accurate solution to predict whether the tobacco is infected only according to 4 features in 91% confidence. Since there are 6 VOC sensors left unused in this model, the device can also be simplified in the future by reducing them. We can also try to add more functions to this device by making use of the left sensors.</p>
                    to predict whether the tobacco is infected only according to 4 features in 91% confidence. Since
+
            <br><br><br>
                    there are 6 VOC sensors are meaningless in this model, we the device can also be simplified by
+
            <div style="text-align: center">
                    reduce them.</p>
+
                <a style="text-align: center" class="CuteButton YellowCB " href="https://2017.igem.org/Team:ZJU-China/Model/Coculture">Another model: Coculture</a>
 +
            </div>
 +
            <br><br><br><br>
 
         </div>
 
         </div>
  
Line 1,232: Line 1,202:
 
             <nav style="position: fixed; top: 100px ; left:50px; "
 
             <nav style="position: fixed; top: 100px ; left:50px; "
 
                 class="bs-docs-sidebar hidden-print hidden-xs hidden-sm">
 
                 class="bs-docs-sidebar hidden-print hidden-xs hidden-sm">
                 <ul class="nav bs-docs-sidenav">
+
                 <ul class="nav bs-docs-sidenav shorterli">
                     <li><a href="#modeling">Modelling</a></li>
+
                     <li><a href="#modeling">Modeling</a></li>
 
                     <li>
 
                     <li>
 
                         <a href="#vocclassification">VOC Classification</a>
 
                         <a href="#vocclassification">VOC Classification</a>

Latest revision as of 15:58, 3 December 2017

Modeling

VOC Classification

Overview

The VOC device is designed to tell whether the tobacco is heathy or infected. Since this is an inquiry experiment, algorithms in data analysis are widely used in our modeling. We did data preprocessing, data analysis, and algorithm optimization on the data collected by VOC device. Finally, we used Logistic regression and detected the infected tobacco with 91% confidence.

Data preprocessing

First we defragmented the raw input data, and reorganized them into a matrix. 10 VOC factors were served as features, and the status(heathy or infected) was served as a tag to be predicted.

Then we analyzed the data using box plot and discovered that most data were normal, but some records were singular, whose box plot is shown as follows:

We removed those records with singular value, it turned out that the data left obey the normal distribution:

Data analysis

Our target was to create a model to predicted tobacco's status according to 10 input features. This is a classic two classification problem, which we had several algrithm to solve. The sampling algorithm is cross validation and the scoring policy we applied is ridit test

Decision Tree

First we used decision tree, which is based on information theory. ID3 decision tree was used to reduce the most information gain, while CART tree was used to reduce the GINI index. The performance of these two algorithm is almost the same. R = 0.83

MLP

The second algorithm we applied is Multi-Layer Perception, also called neural network. In this model, we used more than 100 neurons in each layer and the activation function is relu.

The result of MLP is much better than decision tree.R = 0.89

Leaner Model

Although the performance of MLP had been good enough, it's difficult to extract konwledge learnt by algorithm, which means the interpretability is weak. Why not try a simple model with high interpretability? First we tried LDA algorithm to compress the 10 dimensions data into 2 dimensions.

We define as within-class scatter matrix

We define as between-class scatter matrix

The result of LDA algorithm is as follows: :

This result proved the data are linear separable, which enabled us to chose logistics regression algorithm.

We difine

Then we can apply maximum likelihood method algorithm to estimate the paramaters.

The result is as follows:

                            Weight:
                            [[ 0.1819504 0.38788225 0.01350023 0.39594948 0.17799418
                            0.42087034
                            -0.57733395 -0.23876003 -0.00532918 -0.46174515]]
                            Intercept:
                            [ 0.00937812]
                            Effect:
                            D    35.300735
                            B    22.596339
                            F    18.289277
                            E    10.265025
                            C     0.393225
                            I    -1.575564
                            A   -10.679026
                            H   -14.398440
                            G   -26.211964
                            J   -39.130542
                            dtype: float64
                            Score:
                            0.894333333333
                        

Algorithm optimization

From the result of logistics regression, factor C and I and etc. are with less important weight, these factors may disturb the classifaction. We tried to reduce insigfinicant factors to simplify the model.

Finally, we reserved 4 factors with which we can predict the tobacco's status with 91% confidence and also reduced the VOC device.

                    Weight:
                    [[ 0.53196697  0.3404023  -0.53555988 -0.45588715]]
                    Intercept:
                    [-0.01204088]
                    Effect:
                    D    33.217011
                    F    15.492680
                    G   -17.319760
                    J   -33.967849
                    dtype: float64
                    Score:
                    0.912444444444
                

Summary

In this model, we tried different algorithm to abttain a robust, interpretable, and accurate solution to predict whether the tobacco is infected only according to 4 features in 91% confidence. Since there are 6 VOC sensors left unused in this model, the device can also be simplified in the future by reducing them. We can also try to add more functions to this device by making use of the left sensors.