|
|
Line 233: |
Line 233: |
| <div style='text-align: left'><header><strong class='sub_headers'>References</strong></header></div> | | <div style='text-align: left'><header><strong class='sub_headers'>References</strong></header></div> |
| <section style='text-align:justify' class='sub_sections'> | | <section style='text-align:justify' class='sub_sections'> |
− | [<span id'ref1_pd'>1</span>] Kitney, R., Calvert, J., Challis, R., Cooper, J., Elfick, A., Freemont, P. S., ... & Paterson, L. (2009). Synthetic Biology: scope, applications and implications. London: The Royal Academy of Engineering.</br> | + | [<span id='ref1_pd'>1</span>] Kitney, R., Calvert, J., Challis, R., Cooper, J., Elfick, A., Freemont, P. S., ... & Paterson, L. (2009). Synthetic Biology: scope, applications and implications. London: The Royal Academy of Engineering.</br> |
− | [<span id'ref2_pd'>2</span>] Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss, R., & Benenson, Y. (2007). A universal RNAi-based logic evaluator that operates in mammalian cells. Nature biotechnology, 25(7), 795-801.</br> | + | [<span id='ref2_pd'>2</span>] Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss, R., & Benenson, Y. (2007). A universal RNAi-based logic evaluator that operates in mammalian cells. Nature biotechnology, 25(7), 795-801.</br> |
− | [<span id'ref3_pd'>3</span>] Soifer, H. S., Rossi, J. J., & Sætrom, P. (2007). MicroRNAs in disease and potential therapeutic applications. Molecular therapy, 15(12), 2070-2079.</br> | + | [<span id='ref3_pd'>3</span>] Soifer, H. S., Rossi, J. J., & Sætrom, P. (2007). MicroRNAs in disease and potential therapeutic applications. Molecular therapy, 15(12), 2070-2079.</br> |
− | [<span id'ref4_pd'>4</span>] Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., & Benenson, Y. (2011). Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333(6047), 1307-1311.</br> | + | [<span id='ref4_pd'>4</span>] Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., & Benenson, Y. (2011). Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333(6047), 1307-1311.</br> |
− | [<span id'ref5_pd'>5</span>] Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama, S., ... & Okubo, C. (2015). Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell, 16(6), 699-711.</br> | + | [<span id='ref5_pd'>5</span>] Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama, S., ... & Okubo, C. (2015). Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell, 16(6), 699-711.</br> |
− | [<span id'ref6_pd'>6</span>] Li, Y., Jiang, Y., Chen, H., Liao, W., Li, Z., Weiss, R., & Xie, Z. (2015). Modular construction of mammalian gene circuits using TALE transcriptional repressors. Nature chemical biology, 11(3), 207-213.</br> | + | [<span id='ref6_pd'>6</span>] Li, Y., Jiang, Y., Chen, H., Liao, W., Li, Z., Weiss, R., & Xie, Z. (2015). Modular construction of mammalian gene circuits using TALE transcriptional repressors. Nature chemical biology, 11(3), 207-213.</br> |
− | [<span id'ref7_pd'>7</span>] Sayeg, M.K., Weinberg, B.H., Cha, S.S., Goodloe, M., Wong, W.W., and Han, X. (2015). Rationally designed microRNA-based genetic classifiers target specific neurons in the brain. ACS Synth. Biol. 4, 788–795.</br> | + | [<span id='ref7_pd'>7</span>] Sayeg, M.K., Weinberg, B.H., Cha, S.S., Goodloe, M., Wong, W.W., and Han, X. (2015). Rationally designed microRNA-based genetic classifiers target specific neurons in the brain. ACS Synth. Biol. 4, 788–795.</br> |
− | [<span id'ref8_pd'>8</span>] Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., ... & Lin, C. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129(7), 1401-1414.</br> | + | [<span id='ref8_pd'>8</span>] Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., ... & Lin, C. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129(7), 1401-1414.</br> |
− | [<span id'ref9_pd'>9</span>] Benenson, Y. (2012). Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics, 13(7), 455-468.</br> | + | [<span id='ref9_pd'>9</span>] Benenson, Y. (2012). Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics, 13(7), 455-468.</br> |
| [<span id'ref10_pd'>10</span>] Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., & Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science-AAAS-Weekly Paper Edition, 268(5218), 1766-1768.</br> | | [<span id'ref10_pd'>10</span>] Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., & Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science-AAAS-Weekly Paper Edition, 268(5218), 1766-1768.</br> |
− | [<span id'ref11_pd'>11</span>] Leisner, M., Bleris, L., Lohmueller, J., Xie, Z., & Benenson, Y. (2010). Rationally designed logic integration of regulatory signals in mammalian cells. Nature nanotechnology, 5(9), 666-670.</br> | + | [<span id='ref11_pd'>11</span>] Leisner, M., Bleris, L., Lohmueller, J., Xie, Z., & Benenson, Y. (2010). Rationally designed logic integration of regulatory signals in mammalian cells. Nature nanotechnology, 5(9), 666-670.</br> |
− | [<span id'ref12_pd'>12</span>] Backendorf, C., Visser, A. E., De Boer, A. G., Zimmerman, R., Visser, M., Voskamp, P., ... & Noteborn, M. (2008). Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu. Rev. Pharmacol. Toxicol., 48, 143-169.</br> | + | [<span id='ref12_pd'>12</span>] Backendorf, C., Visser, A. E., De Boer, A. G., Zimmerman, R., Visser, M., Voskamp, P., ... & Noteborn, M. (2008). Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu. Rev. Pharmacol. Toxicol., 48, 143-169.</br> |
− | [<span id'ref13_pd'>13</span>] Damalas, S. (2017, June 9). The MetaBrick platform for DNA manipulation and standardization. Bridging Synthetic Biology standards for optimized interoperability. </br> | + | [<span id='ref13_pd'>13</span>] Damalas, S. (2017, June 9). The MetaBrick platform for DNA manipulation and standardization. Bridging Synthetic Biology standards for optimized interoperability. </br> |
− | [<span id'ref14_pd'>14</span>] Haefliger, B., Prochazka, L., Angelici, B., & Benenson, Y. (2016). Precision multidimensional assay for high-throughput microRNA drug discovery. Nature communications, 7.</br> | + | [<span id='ref14_pd'>14</span>] Haefliger, B., Prochazka, L., Angelici, B., & Benenson, Y. (2016). Precision multidimensional assay for high-throughput microRNA drug discovery. Nature communications, 7.</br> |
− | [<span id'ref15_pd'>15</span>] Stentebjerg-Olesen, B., Chakraborty, T., & Klemm, P. (1999). Type 1 Fimbriation and Phase Switching in a Natural Escherichia coli fimB Null Strain, Nissle 1917. Journal of bacteriology, 181(24), 7470-7478.</br> | + | [<span id='ref15_pd'>15</span>] Stentebjerg-Olesen, B., Chakraborty, T., & Klemm, P. (1999). Type 1 Fimbriation and Phase Switching in a Natural Escherichia coli fimB Null Strain, Nissle 1917. Journal of bacteriology, 181(24), 7470-7478.</br> |
− | [<span id'ref16_pd'>16</span>] Brinton, C. C. (1965). The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Transactions of the New York Academy of Sciences, 27(8 Series II), 1003-1054. </br> | + | [<span id='ref16_pd'>16</span>] Brinton, C. C. (1965). The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Transactions of the New York Academy of Sciences, 27(8 Series II), 1003-1054. </br> |
− | [<span id'ref17_pd'>17</span>] Klemm, P., & Christiansen, G. (1987). Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae. Molecular and General Genetics MGG, 208(3), 439-445. </br> | + | [<span id='ref17_pd'>17</span>] Klemm, P., & Christiansen, G. (1987). Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae. Molecular and General Genetics MGG, 208(3), 439-445. </br> |
− | [<span id'ref18_pd'>18</span>] Krogfelt, K. A., & Klemm, P. (1988). Investigation of minor components of Escherichia coli type 1 fimbriae: protein chemical and immunological aspects. Microbial pathogenesis, 4(3), 231-238. </br> | + | [<span id='ref18_pd'>18</span>] Krogfelt, K. A., & Klemm, P. (1988). Investigation of minor components of Escherichia coli type 1 fimbriae: protein chemical and immunological aspects. Microbial pathogenesis, 4(3), 231-238. </br> |
− | [<span id'ref19_pd'>19</span>] Jones, C. H., Pinkner, J. S., Roth, R., Heuser, J., Nicholes, A. V., Abraham, S. N., & Hultgren, S. J. (1995). FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proceedings of the National Academy of Sciences, 92(6), 2081-2085.</br> | + | [<span id='ref19_pd'>19</span>] Jones, C. H., Pinkner, J. S., Roth, R., Heuser, J., Nicholes, A. V., Abraham, S. N., & Hultgren, S. J. (1995). FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proceedings of the National Academy of Sciences, 92(6), 2081-2085.</br> |
− | [<span id'ref20_pd'>20</span>] Krogfelt, K. A., Bergmans, H., & Klemm, P. (1990). Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infection and immunity, 58(6), 1995-1998.</br> | + | [<span id='ref20_pd'>20</span>] Krogfelt, K. A., Bergmans, H., & Klemm, P. (1990). Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infection and immunity, 58(6), 1995-1998.</br> |
− | [<span id'ref21_pd'>21</span>] Schembri, M. A., Sokurenko, E. V., & Klemm, P. (2000). Functional flexibility of the FimH adhesin: insights from a random mutant library. Infection and immunity, 68(5), 2638-2646.</br> | + | [<span id='ref21_pd'>21</span>] Schembri, M. A., Sokurenko, E. V., & Klemm, P. (2000). Functional flexibility of the FimH adhesin: insights from a random mutant library. Infection and immunity, 68(5), 2638-2646.</br> |
− | [<span id'ref22_pd'>22</span>] Kelly, K. A., & Jones, D. A. (2003). Isolation of a colon tumor specific binding peptide using phage display selection. Neoplasia, 5(5), 437-444.</br> | + | [<span id='ref22_pd'>22</span>] Kelly, K. A., & Jones, D. A. (2003). Isolation of a colon tumor specific binding peptide using phage display selection. Neoplasia, 5(5), 437-444.</br> |
− | [<span id'ref23_pd'>23</span>] Fajac, I., Grosse, S., Collombet, J. M., Thevenot, G., Goussard, S., Danel, C., & Grillot-Courvalin, C. (2004). Recombinant Escherichia coli as a gene delivery vector into airway epithelial cells. Journal of controlled release, 97(2), 371-381.</br> | + | [<span id='ref23_pd'>23</span>] Fajac, I., Grosse, S., Collombet, J. M., Thevenot, G., Goussard, S., Danel, C., & Grillot-Courvalin, C. (2004). Recombinant Escherichia coli as a gene delivery vector into airway epithelial cells. Journal of controlled release, 97(2), 371-381.</br> |
− | [<span id'ref24_pd'>24</span>] Grillot-Courvalin, C., Goussard, S., Huetz, F., Ojcius, D. M., & Courvalin, P. (1998). Functional gene transfer from intracellular bacteria to mammalian cells. Nature biotechnology, 16(9), 862-866.</br> | + | [<span id='ref24_pd'>24</span>] Grillot-Courvalin, C., Goussard, S., Huetz, F., Ojcius, D. M., & Courvalin, P. (1998). Functional gene transfer from intracellular bacteria to mammalian cells. Nature biotechnology, 16(9), 862-866.</br> |
− | [<span id'ref25_pd'>25</span>] Isberg, R. R., Voorhis, D. L., & Falkow, S. (1987). Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell, 50(5), 769-778. </br> | + | [<span id='ref25_pd'>25</span>] Isberg, R. R., Voorhis, D. L., & Falkow, S. (1987). Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell, 50(5), 769-778. </br> |
− | [<span id'ref26_pd'>26</span>] Pepe, J. C., & Miller, V. L. (1993). Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proceedings of the National Academy of Sciences, 90(14), 6473-6477. </br> | + | [<span id='ref26_pd'>26</span>] Pepe, J. C., & Miller, V. L. (1993). Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proceedings of the National Academy of Sciences, 90(14), 6473-6477. </br> |
− | [<span id'ref27_pd'>27</span>] McKAY, D. B., & Lu, C. Y. (1991). Listeriolysin as a virulence factor in Listeria monocytogenes infection of neonatal mice and murine decidual tissue. Infection and immunity, 59(11), 4286-4290. </br> | + | [<span id='ref27_pd'>27</span>] McKAY, D. B., & Lu, C. Y. (1991). Listeriolysin as a virulence factor in Listeria monocytogenes infection of neonatal mice and murine decidual tissue. Infection and immunity, 59(11), 4286-4290. </br> |
− | [<span id'ref28_pd'>28</span>] Dramsi, S., & Cossart, P. (2002). Listeriolysin O. The Journal of cell biology, 156(6), 943-946.</br> | + | [<span id='ref28_pd'>28</span>] Dramsi, S., & Cossart, P. (2002). Listeriolysin O. The Journal of cell biology, 156(6), 943-946.</br> |
| </section> | | </section> |
| </article> | | </article> |