Difference between revisions of "Team:Munich/Hardware"

 
(124 intermediate revisions by 5 users not shown)
Line 30: Line 30:
  
 
#myContent *{
 
#myContent *{
  color: #919191;
+
  color: #444444;
 
}
 
}
  
Line 61: Line 61:
 
   color: #919191;
 
   color: #919191;
 
}
 
}
 +
 +
#HQ_page #hardwareFrontPage td{
 +
padding:0;
 +
}
 +
 +
#HQ_page #hardwareFrontPage img{
 +
background-size: 100% 100%;
 +
}
 +
 +
#HQ_page #hardwareFrontPage img:hover{
 +
background-size: 100% 100%;
 +
}
 +
 +
#HQ_page .picture1{
 +
width: 320px;
 +
height: 155px;
 +
background: url("https://static.igem.org/mediawiki/2017/4/45/Valve_hw_home.jpeg")
 +
}
 +
 +
#HQ_page .picture1:hover{
 +
background: url("https://static.igem.org/mediawiki/2017/5/53/Pressure_supply_hw_home2.png")
 +
}
 +
 +
#HQ_page #picture2{
 +
width: 320px;
 +
height: 210px;
 +
background: url("https://static.igem.org/mediawiki/2017/e/e1/Paper_strip_hw_home.jpeg")
 +
}
 +
 +
#HQ_page #picture2:hover{
 +
background: url("https://static.igem.org/mediawiki/2017/2/22/Paper_strip_hw_home3.png")
 +
}
 +
 +
#HQ_page #picture3{
 +
width: 320px;
 +
height: 210px;
 +
background: url("https://static.igem.org/mediawiki/2017/3/39/Heater_hw_home.jpeg")
 +
}
 +
 +
#HQ_page #picture3:hover{
 +
background: url("https://static.igem.org/mediawiki/2017/5/5d/Heater_cad_hw_home.png")
 +
}
 +
 +
#HQ_page #picture4{
 +
width: 640px;
 +
height: 555px;
 +
background: url("https://static.igem.org/mediawiki/2017/7/7d/Detector_hw_startpage.jpeg");
 +
}
 +
 +
#HQ_page #picture4:hover{
 +
background: url("https://static.igem.org/mediawiki/2017/2/2e/Detector_hw_home.png")
 +
}
 +
 
</style>
 
</style>
 
</head></html>
 
</head></html>
Line 77: Line 130:
 
<!-- Head End -->
 
<!-- Head End -->
 
<!-- Content Begin -->
 
<!-- Content Begin -->
<img id="TopPicture" width="960" src="https://static.igem.org/mediawiki/2017/b/be/T--Munich--FrontPagePictures_Attributions.jpg">
 
 
<table width="960" border=0 cellspacing=0 cellpadding=10>
 
<table width="960" border=0 cellspacing=0 cellpadding=10>
 
<tr>
 
<tr>
Line 87: Line 139:
 
<td width=160></td>
 
<td width=160></td>
 
</tr>
 
</tr>
<tr><td colspan=6 align=left valign=center>
+
<tr id="hardwareFrontPage">
<font size=7 color=#51a7f9><b style="color: #51a7f9">Hardware</b></font>
+
<td colspan=2>
</td>
+
<table width=320>
</tr>
+
 
 
<tr>
 
<tr>
<td colspan = 6 align="left">
+
<td>
<p class="introduction">
+
<a href="/Team:Munich/Hardware/QuakeValve"><img class="picture1" src="https://static.igem.org/mediawiki/2017/0/08/T--Munich--Overlay.png"></a>
Our pathogen detection approach relies on Cas13a digesting RNA. A common way of monitoring RNase activityis using commercially available RNaseAlert consisting of a fluorescent RNA beacon. This is impractical for in-fieldapplications because commercial fluorescence detectors are expensive and inconveniently large. We therefore makeour pathogen detection system fit for in-field applications by developing a cheap and handy fluorescence detector. Al-though many previous iGEM teams constructed fluorescence detectors, we could not find any that had a high enoughsensitivity or the ability to measure fluorescence quantitatively. We therefore constructed a detector matching ourrequirements and compared it to others in a cost vs sensitivity diagram.
+
</td>
                </p>
+
<td>
<p class="introduction">
+
Our detector is paper-based and can detect fluorescein concentrations down to 200 nM. The detector is able to automatically
+
measure fluorescence in units of equivalent fluorescein concentrations. It fits in a pipette box and costs less
+
than 15 $. We were able to measure a time trace of Cas13a digesting RNaseAlert with our detector. For comparison
+
we also measured a positive control containing RNase A and a negative control containing only RNaseAlert. The
+
data are displayed in the figure bellow.
+
                </p>
+
<p class="introduction">
+
The time traces show an enzymatic reaction taking place on filter paper. This proves that our detector is sensitive
+
enough and meets our requirements. However the detector is not limited to our specific application but can be used
+
for the detection of any fluorescence signal in biological or chemical systems. We therefore think that our detector
+
can benefit other iGEM teams and research groups that want to make fluorescence based detection fit for in-field
+
applications.
+
                </p>
+
 
+
</td>
+
</tr>
+
 
+
 
+
 
+
 
+
 
+
 
+
<tr><td colspan=6 align=center valign=center>
+
<h3>Overall Design</h3>
+
<p> 
+
Light from a blue LED is filtered by a blue filter foil and excites fluorophores on a filter paper. The excitation light
+
is blocked by an orange filter foil while the emission light from the fluoroscopes passes through the orange filter foil
+
and illuminates a light dependent resistor (LDR). The LDR changes its resistance corresponding to the intensity
+
of the fluorescence light.Finally an Arduino Nano measures the resistance via a voltage divider and calculates the
+
fluorophore concentration. The two figures bellow show this overall design and the operational detector.</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
 +
</table>
  
<tr><td colspan=6 align=center valign=center>
+
<a href="/Team:Munich/Hardware/SampleProcessing"><img id="picture3" src="https://static.igem.org/mediawiki/2017/0/08/T--Munich--Overlay.png"></a>
<h3>Components</h3></td></tr>
+
<a href="/Team:Munich/Hardware/Paperstrip"><img id="picture2" src="https://static.igem.org/mediawiki/2017/0/08/T--Munich--Overlay.png"></a>
<tr><td colspan=6 align=center valign=center>
+
<h4>Micro Controller</h4>
+
<p> 
+
We used an Arduino Nano for automatized data collection. This micro controller has analog pins that can measure
+
voltages from 0 to 5 V and gives an integer from 0 to 1023 as output. The micro controller is connected via an USB port with a computer or smart-phone where the data can be processed further.</p>
+
 
</td>
 
</td>
</tr>
+
<td colspan=4>
 
+
<a href="/Team:Munich/Hardware/Detector"><img id="picture4" src="https://static.igem.org/mediawiki/2017/0/08/T--Munich--Overlay.png"></a>
<tr><td colspan=6 align=center valign=center>
+
<h4>Light dependent resistor (LDR)</h4>
+
<p id="equation1"> 
+
For the detection of fluorescence light we used a light depending resistor (LDR). A LDR decreases its resistance <i>R<sub>LDR</sub></i> with increasing light intensity <i>I</i>. The dependence of the resistance <i>R<sub>LDR</sub></i> on the light intensity <i>I</i> is</p>
+
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/3/33/T--Munich--Hardware_equation1.png"><span>(1)</span></div>
+
<p>
+
where γ is a parameter depending on the type of resistor being used and can even differ for LDRs with the same type
+
designation.
+
</p>
+
<p>
+
<a href="#equation1">Equation 1</a> is motivated from the equation
+
</p>
+
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/4/4b/T--Munich--Hardware_equation2.png"><span>(2)</span></div>
+
<p>
+
which is given in the data sheet of the LDR. The denominator is the decadic logarithm of the fraction of two light
+
intensities of 100 Lx and 10 Lx. <i>R<sub>10</sub></i> and <i>R<sub>100</sub></i> are the corresponding resistances at these light intensities. The used resistor with the type designation GL5516 NT00183 has a parameter γ of 0.8.
+
</p>
+
<p>
+
The response of a LDR depends on the wavelength λ of the incoming light. The data sheet provides information on
+
the relative response normalized to the maximal response. The relative response is maximum for a wavelength of 540
+
nm and is therefore appropriate for detection of green fluorophores.
+
</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
  
<tr><td colspan=6 align=center valign=center>
+
<tr>
<h4>Circuit for resistance measurements</h4>
+
<td colspan=6>
<p> 
+
<div class="captionPicture">
A voltage divider as shown in the figure bellow is the simplest way to measure resistance.
+
</p>
+
 
<p>
 
<p>
Applying Kirchhoff’s laws we get
+
Complete overview of all modular hardware parts in our pathogen detection system. Shown are counterclockwise and starting in in the upper left corner: The Quake valve that controls fluid flow, our sample processing device, the paper strip where a reaction mix is stored and the readout reaction takes place and finally our low-cost fluorescence detector "Lightbringer" that performs the readout measurement. Images are clickable and linked to the corresponding wiki subsection.  
</p>
+
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/b/b1/T--Munich--Hardware_equation3.png"><span>(3)</span></div>
+
<p>
+
and
+
</p>
+
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/9/99/T--Munich--Hardware_equation4.png"><span>(4)</span></div>
+
<p id="equation5">
+
<i>R<sub>LDR</sub></i> and <i>U<sub>LDR</sub></i> are the resistance and voltage drop at the LDR. <i>R<sub>ref</sub></i> and <i>U<sub>ref</sub></i> are the resistance and voltage drop at a reference resistor. <i>U<sub>0</sub></i> is the supply voltage which we choose to be 5V. This gives
+
</p>
+
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/c/c7/T--Munich--Hardware_equation5.png"><span>(5)</span></div>
+
<p>
+
an equation to calculate <i>R<sub>LDR</sub></i> from <i>U<sub>LDR</sub></i>, which can be measured with the micro controller.
+
</p>
+
<p>
+
We need to find an equation to choose an optimal resistor <i>R<sub>ref</sub></i> . We want a maximum change of <i>U<sub>LDR</sub></i> for a certain detection range of <i>R<sub>LDR</sub></i>. Therefore <a href="#equation5">equation 5</a> is solved for <i>U<sub>LDR</sub></i> giving
+
</p>
+
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/3/3f/T--Munich--Hardware_equation6.png"><span>(6)</span></div>
+
<p>
+
The change ∆<i>U<sub>LDR</sub></i> of <i>U<sub>LDR</sub></i> between a maximum value <i>R<sub>max</sub></i> and a minimum value <i>R<sub>min</sub></i> of <i>R<sub>LDR</sub></i> is
+
</p>
+
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/9/9b/T--Munich--Hardware_equation7.png"><span>(7)</span></div>
+
<p id="equation8">
+
which has a maximum for
+
</p>
+
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/c/c0/T--Munich--Hardware_equation8.png"><span>(8)</span></div>
+
<p>
+
We expect an <i>R<sub>max</sub></i> of approximately 2 MΩ and an <i>R<sub>min</sub></i> of approximately 1 MΩ. By using <a href="#equation8">equation 8</a> as a guideline we choose <i>R<sub>ref</sub></i> to be 1.5 MΩ.
+
</p>
+
</td>
+
</tr>
+
  
<tr><td colspan=6 align=center valign=center>
 
<h4>Light Emitting Diode (LED)</h4>
 
<p> 
 
To detect green fluorophores we choose a blue LED with peak emission at 470 nm. For optimum performance we
 
choose the brightest LED we could find. The LED used has a luminous intensity of 12 cd, a maximum current of 20
 
mA and a forward voltage of 3.2 V.
 
 
</p>
 
</p>
</td>
+
</div></td>
 
</tr>
 
</tr>
  
<tr><td colspan=6 align=center valign=center>
+
<tr><td colspan=6 align=left valign=center>
<h4>NPN Transistor</h4>
+
<font size=7 color=#51a7f9><b style="color: #51a7f9">Hardware</b></font>
<p>
+
To provide a stable illumination, it is crucial to supply the LED with a constant voltage. We therefore control it via
+
a NPN transistor with type designation BC635. Its base-emitter-on voltage is 2 V.
+
</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
 +
<tr>
 +
<td  colspan = 6 align=center valign=center>
 +
<p class="introduction">
 +
 +
The liberation of diagnostic tests from expensive lab infrastructure requires innovative ways of sample processing and measuring. We therefore developed a set of portable hardware tools with the goal of providing an automated sample-to-answer solution. The heart of our system is <a class="myLink" href="https://2017.igem.org/Team:Munich/Hardware/Detector">‘Lightbringer’</a>, our fluorescence detector, which is capable of measuring kinetics of biological or chemical reactions on <a class="myLink" href= "https://2017.igem.org/Team:Munich/Hardware/Paperstrip" >paper.</a> Built from 3D–printed parts and standard electronic components, it can be assembled for less than 15$, while offering a sensitivity competitive to commercial fluorescence readers. Additionally, tackling the challenge of sample pre-processing in field, we developed a portable <a class="myLink" href="https://2017.igem.org/Team:Munich/Hardware/SampleProcessing">  fluidic system</a>, featuring a temperature control unit for lysis and isothermal PCR. Conceiving a platform independent of lab infrastructure, we demonstrate the feasibility of <a class="myLink" href="https://2017.igem.org/Team:Munich/Hardware/QuakeValve"> controlling fluid flow</a> with bike tires and air balloons. All hardware components are designed and documented with the aim of enabling the community to reproduce and extend our set of tools.
 +
                </p>
  
<tr><td colspan=6 align=center valign=center>
+
<div class="captionPicture">
<h4>Control Circuit for the LED</h4>
+
<img width=960 src="https://static.igem.org/mediawiki/2017/2/26/Schema_final_lowres.png">
<p> 
+
The digital output pin is connected to the base of the transistor via a voltage divider, consisting of the resistor <i>R<sub>1</sub></i> with a resistance of 1 kΩ and the resistor <i>R<sub>2</sub></i> with a resistance of 9.1 kΩ. When the output pin is set to 5 V a voltage of 4.5 V is present at the base of the transistor. This is above the base-emitter-on voltage and the LED is turned on.
+
The resistor <i>R<sub>3</sub></i> with resistance 39 Ω was chosen empirically to limit the LEDs working current and to power it at
+
maximum brightness. The control circuit is illustrated in the image bellow.
+
</p>
+
</td>
+
</tr>
+
 
+
<tr><td colspan=6 align=center valign=center>
+
<h4>Light Filter Foils</h4>
+
<p> 
+
For filtering the emission and excitation light we used filter foils from LEE filters. The producer provides transmission
+
spectra for every filter foil. For the excitation filter we choose the filter color "TOKYO BLUE" and for the emission
+
filter we choose the filter color "RUST". We used our UV-Vis spectrometer to measure the spectra of different combinations
+
of filter foils. As shown in the figure bellow, a combination of one orange and two blue filter foils blocks
+
nearly all light up to 700 nm. This combination is therefore ideal for blocking the excitation light of the blue LED
+
from reaching the LDR.
+
</p>
+
</td>
+
</tr>
+
 
+
<tr><td colspan=6 align=center valign=center>
+
<h4>Filter Paper</h4>
+
<p> 
+
We choose glass fiber filter paper from Whatman Laboratory Products with type designation "934-AH" to detect
+
fluorescence on. In contrast, cellulose or nitrocellulose filter paper is auto fluorescent and causes a high background
+
signal.
+
</p>
+
</td>
+
</tr>
+
 
+
<tr><td colspan=6 align=center valign=center>
+
<h4>3D Printed Parts</h4>
+
<p> 
+
We intended to put the LED,the fluorescence sample and the LDR in direct proximity, to ensures a maximum use
+
of excitation light and emission light. We therefore chose a sandwich-like design for our sample holder that can be
+
placed into a slot where the detection system snaps in keeps the sample in position.
+
</p>
+
 
<p>
 
<p>
In detail, two blue filter foils are stacked and glued with tape in front of two excitation windows of the upper half of
 
the sandwich. One orange filter foil is glued to the lower half of the sandwich. The two detection windows enable us
 
to measure a blank sample and an actual sample with the exact same set-up. We avoid using scotch tape to cover
 
the detection windows because tape is usually auto fluorescent and causes a high background signal. A piece of filter
 
paper is placed between the two halves of the sandwich. The upper and lower part of this sandwich are pressed
 
together with magnets to hold the filter paper in position and ensure an user-friendly exchange of filter papers. A
 
explosion drawing of the sample holder is shown in the figure bellow.
 
 
</p>
 
</p>
<p>
+
</div>
The sandwich can now be inserted into the slot of the detection device. The LED and the LDR are mounted onto
+
beams at opposite sites of the detection device. The sandwich snaps in when the LED and the LDR are at the right
+
position under the excitation and over detection window. Four magnets apply an additional force to the beams and
+
press the LED and the LDR close together. This design ensures that the distance between filter paper, LED and
+
LDR is only limited by the thickness of the filter foils.
+
</p>
+
</td>
+
</tr>
+
  
<tr class="lastRow"><td colspan=6 align=center valign=center>
 
<h4>List of materials and cost calculation</h4>
 
<table class="myTable" width=60%>
 
<th class="leftAligned">Used item</th>
 
<th class="rightAligned">Cost in EUR</th>
 
<tr>
 
<td class="leftAligned">Geekcreit ATmega328P Arduino compatible Nano</td>
 
<td class="rightAligned">2.51</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">USB cable</td>
 
<td class="rightAligned">1.50</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">LDR</td>
 
<td class="rightAligned">0.15</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">Blue LED</td>
 
<td class="rightAligned">0.10</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">2 NPN Transistors</td>
 
<td class="rightAligned">0.12</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">Green LED</td>
 
<td class="rightAligned">0.10</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">Hole raster board</td>
 
<td class="rightAligned">0.42</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">8 resistors</td>
 
<td class="rightAligned">0.48</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">Filter foils</td>
 
<td class="rightAligned">0.10</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">10 Magnets</td>
 
<td class="rightAligned">4.80</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">ca. 100 g PLA</td>
 
<td class="rightAligned">3.00</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">4 M3 screws</td>
 
<td class="rightAligned">0.04</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">4 M3 nutts</td>
 
<td class="rightAligned">0.04</td>
 
</tr>
 
<tr>
 
<td class="leftAligned">Total cost</td>
 
<td class="rightAligned">13.36</td>
 
</tr>
 
</table>
 
<p> 
 
We kept an eye on using only low cost and easy available items for the construction of our detector.
 
</p>
 
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr class="lastRow"><td colspan=6 align=center valign=center>
 
<h3>Calibration</h3></td></tr>
 
<tr><td colspan=6 align=center valign=center>
 
<h4>Derivation of a calibration function</h4>
 
<p> 
 
We want to find an equation that relates fluorophore concentration <i>c</i> and the corresponding resistance <i>R<sub>LDR</sub></i>. The light intensity <i>I</i> at the LDR during a fluorescence measurement is a sum of signal intensity <i>I<sub>s</sub></i> and background intensity <i>I<sub>b</sub></i>:
 
</p>
 
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/4/4f/T--Munich--Hardware_equation9.png"><span>(9)</span></div>
 
<p>
 
We assume that <i>I<sub>b</sub></i> is the intensity for a water sample. Importantly, wet samples give a different background signal than dry ones, suspectedly due to different light scattering on the filter paper. With equation 1 this gives an equation for the resistance <i>R<sub>b</sub></i> of a water sample and for the resistance <i>R<sub>LDR</sub></i> for a fluorescence sample,
 
</p>
 
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/8/88/T--Munich--Hardware_equation10.png"><span>(10)</span></div>
 
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/3/3f/T--Munich--Hardware_equation11.png"><span>(11)</span></div>
 
<p id="equation12">
 
Then, the normalized resistance can be expressed as
 
</p>
 
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/c/cc/T--Munich--Hardware_equation12.png"><span>(12)</span></div>
 
<p>
 
We assume that the intensity Is of fluorescence light depends linearly on the concentration c of fluorophores and the
 
light intensity I0 produced by the LED,
 
</p>
 
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/7/7e/T--Munich--Hardware_equation13.png"><span>(13)</span></div>
 
<p>
 
and that the background intensity <i>I<sub>b</sub></i> depends also linearly on <i>I<sub>0</sub></i>,
 
</p>
 
<div class="equationDiv"><img src="https://static.igem.org/mediawiki/2017/c/c7/T--Munich--Hardware_equation14.png"><span>(14)</span></div>
 
<p id="equation15">
 
Therefore
 
</p>
 
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/7/7b/T--Munich--Hardware_equation15.png"><span>(15)</span></div>
 
<p>
 
where <i>k</i> is a constant that depends on the transmission spectra of the filter foils, the spectra of the fluorophore, the
 
spectra of the LED and light scattering effects of the filter paper,but not on <i>I<sub>0</sub></i>. <i>k</i> can be assumed to be constant for one specific measurement set-up.
 
</p>
 
<p>
 
<a href="#equation15">Equation 15</a> inserted into <a href="#equation12">equation 12</a> gives the final equation relating <i>c</i> to <i>R<sub>LDR</sub></i>
 
</p>
 
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/f/f7/T--Munich--Hardware_equation16.png"><span>(16)</span></div>
 
</td>
 
</tr>
 
 
 
  
  

Latest revision as of 09:14, 9 December 2017


Complete overview of all modular hardware parts in our pathogen detection system. Shown are counterclockwise and starting in in the upper left corner: The Quake valve that controls fluid flow, our sample processing device, the paper strip where a reaction mix is stored and the readout reaction takes place and finally our low-cost fluorescence detector "Lightbringer" that performs the readout measurement. Images are clickable and linked to the corresponding wiki subsection.

Hardware

The liberation of diagnostic tests from expensive lab infrastructure requires innovative ways of sample processing and measuring. We therefore developed a set of portable hardware tools with the goal of providing an automated sample-to-answer solution. The heart of our system is ‘Lightbringer’, our fluorescence detector, which is capable of measuring kinetics of biological or chemical reactions on paper. Built from 3D–printed parts and standard electronic components, it can be assembled for less than 15$, while offering a sensitivity competitive to commercial fluorescence readers. Additionally, tackling the challenge of sample pre-processing in field, we developed a portable fluidic system, featuring a temperature control unit for lysis and isothermal PCR. Conceiving a platform independent of lab infrastructure, we demonstrate the feasibility of controlling fluid flow with bike tires and air balloons. All hardware components are designed and documented with the aim of enabling the community to reproduce and extend our set of tools.