Difference between revisions of "Team:Cologne-Duesseldorf/Test4"

(Blanked the page)
 
Line 1: Line 1:
{{Template:Cologne-Duesseldorf/header}}
 
{{Template:Cologne-Duesseldorf/css}}
 
<html>
 
<head>
 
<article>
 
<div class="callout">
 
<table>
 
      <tbody>
 
            <tr>
 
              <th><h3 style="color:rgb(0,0,0)"><a style="color:rgb(0,0,0)" href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results">Results</h3></th>           
 
              <th><h3 style="color:rgb(0,0,0)">Achieved</h3></th>
 
            </tr>
 
  
            <tr>
 
              <td>We were able to design and successfully test an orthogonal peroxisomal protein <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#PEX5Import">import mechanism</a> for peroxisomes in <i>S. cerevisiae<i></td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>By decorating the peroxisomes with the v-SNARE Snc1 we successfully <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Secretion">secreted</a> their entire contents</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>With two different <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Sensors">sensors</a> we were able to efficiently measure the pH and the redox potential inside our yeast peroxisomes</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>Via fluorescence microscopy we verified that the <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#MembraneIntegration">integration of new membrane proteins</a> into the peroxisomal membrane is possible</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>By successfully translocating the required enzymes for the metabolic pathways of <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Nootkatone">Nootkatone</a> and <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Violacein">Violacein</a> into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>We successfully implemented a way of customizing the <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#SizeAndNumber">size and number</a> of the peroxisomes into our toolbox</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>With a high throughput assay we characterized the import efficiency of <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Pex7Import">different PTS2 sequences</a></td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Model">modeled</a> the whole nootkatone pathway and the benefits of it being translocated inside our compartment</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>For our planned optogenetic experiments we designed an affordable <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Hardware">lightbox</a> which can easily be assembled in a short time
 
</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
            <tr>
 
              <td>All our excellent <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results">results</a> can be combined into a highly variable compartment <strong>toolbox</strong> for designing artificial compartments based on the peroxisomes in <i>S. cerevisiae</i> with an enormous range of applications
 
</td>
 
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 
            </tr>
 
 
 
      </tbody>
 
</table>
 
</div>
 
 
 
 
</article>
 
 
 
 
 
 
 
<style>
 
#bodyContent ul.eric li::before {
 
    content: "";
 
    color: #149375;
 
    float: left;
 
    padding-right: 7px;
 
    display: block;
 
    height: 32px;
 
    width: 32px;
 
    background-image: url(https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg);
 
    background-repeat: no-repeat;
 
    background-position: left center;
 
    background-size: 26px;
 
}
 
</style>
 
 
</head>
 
 
 
<body>
 
<!--https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg-->
 
 
 
<article>
 
<ul class="eric">
 
<li>We were able to design and successfully test an orthogonal peroxisomal protein import mechanism for the peroxisome in <i>S. cerevisiae</i>.</li>
 
<li>By decorating the peroxisomes with the v-SNARE Snc1 we successfully secreted their entire contents </li>
 
<li>With two different sensors we were able to efficiently  measure the pH and the redox potential inside our yeast peroxisomes.</li>
 
<li>Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible.</li>
 
<li>By successfully translocating the required enzymes for the metabolic pathways of nootkatone and violacein into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox</li>
 
<li>We successfully implemented a way of customizing the size and number of the peroxisomes into our toolbox.</li>
 
<li>With a high throughput assay we characterized the import efficiency of different PTS2 sequences.</li>
 
<li>To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively modeled the whole nootkatone pathway and the benefits of it being translocated inside our compartment.</li>
 
<li>For our planned optogenetic experiments we designed an affordable lightbox which can easily be assembled in a short time.</li>
 
</ul>
 
 
</ul>
 
</article>
 
</body>
 
</html>
 
{{Template:Cologne-Duesseldorf/footer}}
 
{{Template:Cologne-Duesseldorf/js}}
 

Latest revision as of 10:12, 10 December 2017