(86 intermediate revisions by 5 users not shown) | |||
Line 15: | Line 15: | ||
<section style="display:table;background:none;padding:0px !important;z-index:100; "> | <section style="display:table;background:none;padding:0px !important;z-index:100; "> | ||
− | <h1 style="vertical-align:bottom;display:table-cell; width: | + | <h1 style="vertical-align:bottom;display:table-cell; width:70%;font-size:60pt;letter-spacing: 0.2em;z-index:120;text-align: center;">Description</h1> |
− | <img style="vertical-align:bottom;display:table-cell; width: | + | <img style="vertical-align:bottom;display:table-cell; width:100%;" src="https://static.igem.org/mediawiki/2017/e/e8/T--INSA-UPS_France--description_croco.png" alt=""> |
</section> | </section> | ||
Line 22: | Line 22: | ||
/* ASIDE NAV */ | /* ASIDE NAV */ | ||
.left_container{ | .left_container{ | ||
− | width: | + | width:12%; |
position:absolute; | position:absolute; | ||
− | top: | + | top:300px; |
padding:0; | padding:0; | ||
display:inline-block; | display:inline-block; | ||
font-family: 'Quicksand', sans-serif; | font-family: 'Quicksand', sans-serif; | ||
font-weight: 400; | font-weight: 400; | ||
− | font-size: | + | font-size:11pt; |
text-align: right; | text-align: right; | ||
} | } | ||
Line 42: | Line 42: | ||
.aside-nav__item:after{ | .aside-nav__item:after{ | ||
content:''; | content:''; | ||
− | border:solid #3377a8 | + | border:solid #3377a8 2px; |
position:absolute; | position:absolute; | ||
right:-30px; | right:-30px; | ||
top:40%; | top:40%; | ||
− | width: | + | width:10px; |
− | height: | + | height:10px; |
− | border-radius: | + | border-radius: 10px; |
margin-left:20px; | margin-left:20px; | ||
} | } | ||
Line 57: | Line 57: | ||
position:fixed; | position:fixed; | ||
top: 120px; | top: 120px; | ||
− | width: | + | width: 7%; |
} | } | ||
.aside-nav__item a, .aside-nav__item a:focus, .aside-nav__item a:visited, .aside-nav__item a:hover{ | .aside-nav__item a, .aside-nav__item a:focus, .aside-nav__item a:visited, .aside-nav__item a:hover{ | ||
Line 65: | Line 65: | ||
.aside-nav__item a:hover{ | .aside-nav__item a:hover{ | ||
font-weight: 700; | font-weight: 700; | ||
+ | } | ||
+ | section img{ | ||
+ | max-width: 400px; | ||
} | } | ||
</style> | </style> | ||
Line 72: | Line 75: | ||
<div class="aside-nav__item"> | <div class="aside-nav__item"> | ||
<a href="#a1" data-number="1"> | <a href="#a1" data-number="1"> | ||
− | Synthetic | + | Synthetic Consortia |
</a> | </a> | ||
</div> | </div> | ||
<div class="aside-nav__item"> | <div class="aside-nav__item"> | ||
− | + | <a href="#a2" data-number="2"> | |
− | + | Genesis of our molecular strategy | |
− | + | </a> | |
</div> | </div> | ||
<div class="aside-nav__item"> | <div class="aside-nav__item"> | ||
<a href="#a3" data-number="3"> | <a href="#a3" data-number="3"> | ||
− | A microbial consortium against cholera | + | A microbial consortium chassis against cholera |
</a> | </a> | ||
</div> | </div> | ||
Line 98: | Line 101: | ||
<a href="#a6" data-number="6"> | <a href="#a6" data-number="6"> | ||
The effecting organism: <i>Pichia pastoris</i> | The effecting organism: <i>Pichia pastoris</i> | ||
+ | </a> | ||
+ | </div> | ||
+ | <div class="aside-nav__item"> | ||
+ | <a href="#a7" data-number="7"> | ||
+ | Our system | ||
+ | </a> | ||
+ | </div> | ||
+ | <div class="aside-nav__item"> | ||
+ | <a href="#a8" data-number="8"> | ||
+ | References | ||
</a> | </a> | ||
</div> | </div> | ||
Line 104: | Line 117: | ||
<style> | <style> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
.right_container{ | .right_container{ | ||
− | width: | + | width:83%; |
− | margin-left: | + | margin-left:17%; |
} | } | ||
.article_offset{ | .article_offset{ | ||
Line 134: | Line 132: | ||
<div class="article_offset" id="a1"></div> | <div class="article_offset" id="a1"></div> | ||
<section> | <section> | ||
− | <h1> | + | <h1>Synthetic biology: from unique chassis to synthetic consortia</h1> |
<p> | <p> | ||
− | + | Synthetic biology is based on Nature everlasting possibilities, usually by inserting genetic information from microorganisms into a single and unique chassis<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/26308982" target="_blank">2</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/24686414" target="_blank">3</a></sup>. However, a single chassis could present inevitable limits (high genetic burden, incompatibility of some elements with the chassis, too complex design…). These start to be a limit in synthetic biology, its perspectives and applications<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/" target="_blank">4</a></sup>. An emerging solution is the use of synthetic consortium (figure 1). Synthetic consortium have the advantage to require less amount of genetic information into a single chassis to achieve the required process since different microorganisms can share the genetic burden. Moreover, the components of the consortium could be selected to reduce the genetic modifications and increase the chance of success, for example, by taking advantage of already existing signaling or metabolic pathways. Several successes of those synthetic consortia, such as production of bio-electricity<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27596754/" target="_blank">5</a></sup> or shortening bio-manufacturing process like C-vitamin synthesis<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/26809519/" target="_blank">6</a></sup> have provided insight into the strength of this approach. | |
</p> | </p> | ||
+ | <figure> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--description_sense-effect.png" alt=""> | ||
+ | <figcaption> | ||
+ | <b> Figure 1: General concept of the cell to cell communication. </b> This cascade of events will be developed in our project. | ||
+ | </figcaption> | ||
+ | </figure> | ||
<p> | <p> | ||
− | + | Such approaches are still rare in the iGEM competition, maybe because they require to combine classic strain engineering with information processing strategies. So, our challenge was to demonstrate the power and feasibility of synthetic consortium approach to open new perspectives and applications to iGEMers. | |
</p> | </p> | ||
<p> | <p> | ||
− | + | As a proof of concept, we developed a strategy against cholera. It is based on a cascade of events starting from an engineered <i>Escherichia coli</i> strain mimicking <i>Vibrio cholerae</i>. It triggers a sensor bacterium, <i>Vibrio harveyi</i>, which in turn activates the effector cell (the yeast <i>Pichia pastoris</i>). The later eradicates <i>Vibrio</i> species by producing innovative antimicrobial peptides from crocodile. | |
</p> | </p> | ||
+ | |||
+ | |||
</section> | </section> | ||
− | + | ||
− | + | <div class="article_offset" id="a2"></div> | |
<section> | <section> | ||
− | <h1> | + | <h1>Genesis of our molecular strategy |
</h1> | </h1> | ||
<p> | <p> | ||
− | + | While we were defining our strategy, a cholera epidemia started unfortunately to expand in Yemen<sup><a href="http://www.emro.who.int/yem/yemeninfocus/situation-reports.html" target="_blank">7</a></sup>. This terrible situation led us to focus on this problematic as it appears that current solutions are not efficient enough to deal with this situation. The bacteria <i>V. cholerae</i>, agent of the cholera disease, is usually found in water and infects more than a million people each year. | |
</p> | </p> | ||
− | < | + | <p> |
− | + | Recently, academic research groups started to focus on synthetic biology in order to find a way to deal with <i>V. cholerae</i><sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/16697733" target="_blank">8</a>,<a href="http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079" target="_blank">9</a></sup>. Additionally, some iGEM teams tried also to deal with the challenging detection of <i>V. cholerae</i><sup><a href="https://2014.igem.org/Team:UI-Indonesia" target="_blank">10</a>,<a href="https://2010.igem.org/Team:Sheffield" target="_blank">11</a>,<a href="https://2014.igem.org/Team:UT-Dallas" target="_blank">12</a></sup>, using <i>E. coli</i>. They based their strategy on implementing the quorum sensing detection pathway of <i>V. cholerae</i> into <i>E. coli</i> to activate reporter gene expression. However these projects, no matter how clever and brilliant they might be, were not successful enough, likely due the complexity of introducing a large amount of DNA information in a single microorganism. This is the reason why we built a synthetic consortium of microorganisms. Using multiple microorganisms instead of one will allow us to choose existing species that are already specialized for their tasks, as well as reducing the amount of necessary modification to set up the required functions. The information processing steps have been split in two different microorganisms: <i>V. harveyi</i> as the sensor and <i>P. pastoris</i> as the effector, with the system triggered by <i>V. cholerae</i> presence. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</p> | </p> | ||
</section> | </section> | ||
− | + | ||
<div class="article_offset" id="a3"></div> | <div class="article_offset" id="a3"></div> | ||
<section> | <section> | ||
− | <h1>A microbial consortium against cholera</h1> | + | <h1>A microbial consortium chassis against cholera |
+ | </h1> | ||
<p> | <p> | ||
− | + | The whole synthetic consortium is composed of three microorganisms. The first one should be <i>V. cholerae</i> but for safety reason, we engineered an <i>E. coli</i> strain to produce a <i>V. cholerae</i> molecular signal. The second bacteria required a quorum sensing pathway to detect <i>V. cholerae</i> signal. <i>V. harveyi</i> naturally possesses such pathway and we engineered it to make it able to sense <i>V. cholerae</i>. We also engineered <i>V. harveyi</i> to make it producing a second molecule messenger. The third microorganism, <i>P. pastoris</i> was engineered to detect this messenger and produce in response the secretion of a high amount of antimicrobial peptides that can lyse <i>V. cholerae</i>. | |
</p> | </p> | ||
+ | <p> | ||
+ | We finally created an artificial consortium chassis to deal with cholera disease. The different partners are deeper described below. | ||
+ | </p> | ||
+ | |||
+ | |||
</section> | </section> | ||
+ | |||
<div class="article_offset" id="a4"></div> | <div class="article_offset" id="a4"></div> | ||
<section> | <section> | ||
− | <h1> | + | <h1>Mimicking <i>Vibrio cholerae</i> using <i>Escherichia coli</i></h1> |
− | <p | + | <p> |
− | + | An interesting property of <i>V. cholerae</i> is its quorum sensing autoinducer system based on the production of CAI-1 molecule<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/22001326" target="_blank">13</a></sup>. The amount of this secreted molecule, produced by the enzyme CqsA synthase, is an efficient reporter of the quantity of bacteria in water. As we were not allowed to work with pathogens in our lab, we engineered the strain <i>E. coli</i> in order to mimic <i>V. cholerae</i>. <i>E. coli</i> was transformed with the <i>cqsA</i> gene from <i>V. cholerae</i>. Since our sensor was <i>V. harveyi</i>, as a proof of concept, we also transformed an <i>E. coli</i> strain with the <i>cqsA</i> encoding gene of <i>V. harveyi</i>. This Vh_CqsA enzyme synthetizes C8-CAI-1, an analog of <i>V. cholerae</i> CAI-1<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472" target="_blank">14</a></sup>. | |
− | + | ||
</p> | </p> | ||
− | |||
− | |||
− | |||
− | |||
<p> | <p> | ||
− | + | We therefore developed <i>E. coli</i> strains which produce markers simulating the presence of <i>Vibrio </i> species in the medium. | |
</p> | </p> | ||
</section> | </section> | ||
Line 192: | Line 194: | ||
<div class="article_offset" id="a5"></div> | <div class="article_offset" id="a5"></div> | ||
<section> | <section> | ||
− | <h1> | + | <h1>The sensing organism: <i>Vibrio harveyi</i></h1> |
<p> | <p> | ||
− | + | The easiest way to detect CAI-1 or C8-CAI-1 is to use the quorum sensing pathway of the non-pathogen <i>V. harveyi</i>. As our project will deal directly with <i>V. cholerae</i> in real situation, the CqsS receptor of <i>V. harveyi</i> will have to also recognize the CAI-1 molecule<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/22001326" target="_blank">13</a></sup>. To do so, a single mutation was introduced in the gene <i>cqsS</i> changing the phenylalanine 175 into a cysteine. | |
− | + | ||
</p> | </p> | ||
+ | <figure> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/0/0a/T--INSA-UPS_FRANCE--Design_T1.png" alt="" class="right-img"> | ||
+ | <figcaption> | ||
+ | <b>Figure 2: Closer view of the C8-CAI-1/CqsS sensing of <i>V. harveyi</i><sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472" target="_blank">15</a></sup>. | ||
+ | </figcaption> | ||
+ | </figure> | ||
<p> | <p> | ||
− | + | When C8-CAI-1 binds to CqsS this activate a dephosphorylation cascade leading to the inhibition of the pQRR4 promoter and blocking the transcription of siRNA<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472" target="_blank">14</a></sup>. In the absence of this siRNA, translation of the targets genes (i.e. virulence genes) is activated (See Figure 2). We used this system to produce the molecule (i.e. diactetyl) used to activate <i> P. pastoris </i>. The <i>als </i> coding sequence, encoding for the acetolactate synthase Als, is involved in the conversion of endogenous pyruvate into diacetyl (Figure 3). <i> als </i> was placed under the control of pQRR4 promoter. In this engineered <i> V. Harveyi </i> strain , diacetyl production will be produced in response to both CAI-1 or C8-CAI-1. | |
</p> | </p> | ||
− | + | <figure> | |
− | + | <img src="https://static.igem.org/mediawiki/parts/0/0a/T--INSA-UPS_France--ALSpathway.png" alt=""> | |
− | + | <figcaption> | |
− | </ | + | <b>Figure 3: Production of diacetyl from pyruvate</b>. |
− | + | </figcaption> | |
+ | </figure> | ||
+ | |||
+ | |||
</section> | </section> | ||
<div class="article_offset" id="a6"></div> | <div class="article_offset" id="a6"></div> | ||
+ | <section> | ||
+ | <h1>The effector organism: <i>Pichia pastoris</i></h1> | ||
+ | <p> | ||
+ | The function of the third partner is to efficiently produce a killing molecule (i.e. anti-microbial peptides, AMPs) to lyse both <i>V. cholerae</i> and <i>V. harveyi</i>. This microorganism has to be resistant to the AMPs that are specific to prokaryotic cells. Therefore we chose an eukaryotic cell. Last this eukaryotic microorganism has to communicate with prokaryotic cell. Team SCUT <sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">15</a></sup> previously described a binding-receptor system involving diacetyl and a eukaryotic receptor, Odr-10 <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/" target="_blank">16</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/2302121" target="_blank">17</a></sup>. It is a G Protein Coupled Receptor isolated from <i>Caenorhabditis elegans</i> that once activated by diacetyl, lead to the activation of the pFUS1 promoter through the endogeneous Ste12 pathway (Figure 4). For all this reasons, we chose <i>P. pastoris</i> as the effector organism since it already possess the ste12 pathway and is good protein producer <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27905091" target="_blank">18</a>,<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/" target="_blank">19</a></sup>. | ||
+ | </p> | ||
+ | <figure> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/2/24/T--INSA-UPS_France--Description-communicate.png" alt=""> | ||
+ | <figcaption> | ||
+ | <b>Figure 4: The diacetyl/Odr-10 activation cascade.<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">15</a></sup></b>. | ||
+ | </figcaption> | ||
+ | </figure> | ||
+ | <p> | ||
+ | We engineered the yeast to secret the AMPs under control of the pFUS1 promotor. We choose the AMPs from crocrodiles <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21184776" target="_blank">20</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/2059789" target="_blank">21</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/28159460" target="_blank">22</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">23</a></sup>. Indeed crocodiles display a remarkable and efficient defense system, allowing the reptiles to resist to a large spectrum of bacterial infection. Thus, they produced antimicrobial peptides (AMPs) which are able to lyse bacteria such as <i>V. cholerae</i>. AMPs are cationic pore-forming molecules targeting bacterium membranes, causing bacterial lysis and death <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">24</a></sup>. | ||
+ | </p> | ||
+ | |||
+ | |||
+ | </section> | ||
+ | |||
+ | <div class="article_offset" id="a7"></div> | ||
<section style="background: none;"> | <section style="background: none;"> | ||
− | <h1 | + | <h1>Our system</h1> |
− | + | <p> | |
− | See | + | See our <a href="https://2017.igem.org/Team:INSA-UPS_France/Design">Design page</a> for more informations about the genetic elements we used! |
− | </p | + | </p> |
− | <img src="https://static.igem.org/mediawiki/2017/b/b8/ | + | <img style="max-width: 800px;" src="https://static.igem.org/mediawiki/2017/archive/b/b8/20171101194815%21T--INSA-UPS_France--description_loop.png" alt=""> |
</section> | </section> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<style> | <style> | ||
+ | ol{ | ||
+ | text-align:justify; | ||
+ | } | ||
+ | </style> | ||
− | + | <div class="article_offset" id="a8"></div> | |
− | + | <section> | |
− | + | <h1>References</h1> | |
− | + | <ol> | |
− | + | <li>Brogi S, Tafi A, Désaubry L & Nebigil CG (2014) Discovery of GPCR ligands for probing signal transduction pathways. <i>Frontiers in Pharmacology</i> <br /> | |
− | + | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/</a> | |
− | + | </li> | |
+ | <li> | ||
+ | Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. <i>Nature Neuroscience</i>. <br/> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/26308982">https://www.ncbi.nlm.nih.gov/pubmed/26308982</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Cameron E, Bashor C & Collins J (2014) A brief history of synthetic biology. <i>Nature Reviews Microbiology</i> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/24686414">https://www.ncbi.nlm.nih.gov/pubmed/24686414</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Hennig S, Rödel G & Ostermann K (2015) Artificial cell-cell communication as an emerging tool in synthetic biology applications. <i>Journal of Biological Engineering</i> <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Liu T, Yu Y, Chen T and Chen W. (2016). A synthetic microbial consortium of Shewanella and Bacillusfor enhanced generation of bioelectricity. <i>Biotechnology and Bioengineering</i>, 114(3), pp.526-532. | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/27596754 | ||
+ | ">https://www.ncbi.nlm.nih.gov/pubmed/27596754</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Wang, E., Ding, M., Ma, Q., Dong, X. and Yuan, Y. (2016). Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. <i>Microbial Cell Factories</i>, 15(1). | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/26809519 | ||
+ | ">https://www.ncbi.nlm.nih.gov/pubmed/26809519</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="http://www.emro.who.int/yem/yemeninfocus/situation-reports.html | ||
+ | ">http://www.emro.who.int/yem/yemeninfocus/situation-reports.html | ||
+ | </a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Focareta A, Paton JC, Morona R, Cook J & Paton AW (2006) A Recombinant Probiotic for Treatment and Prevention of Cholera. <i>Gastroenterology</i> <b>130</b> 1688–1695 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/16697733">https://www.ncbi.nlm.nih.gov/pubmed/16697733</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Holowko MB, Wang H, Jayaraman P & Poh CL (2016) Biosensing Vibrio cholerae with Genetically Engineered <i>Escherichia coli</i>. <i>ACS Synthetic Biology</i> | ||
+ | <a href="http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079">http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="https://2014.igem.org/Team:UI-Indonesia">https://2014.igem.org/Team:UI-Indonesia</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="https://2010.igem.org/Team:Sheffield">https://2010.igem.org/Team:Sheffield</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="https://2014.igem.org/Team:UT-Dallas">https://2014.igem.org/Team:UT-Dallas</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Bolitho ME, Perez LJ, Koch MJ, Ng W-L, Bassler BL & Semmelhack MF (2011) Small molecule probes of the receptor binding site in the <i>Vibrio cholerae</i> CAI-1 quorum sensing circuit. <i>Bioorganic & Medicinal Chemistry</i> <b>19</b> 6906–691 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/22001326">https://www.ncbi.nlm.nih.gov/pubmed/22001326</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Ng W-L, Perez LJ, Wei Y, Kraml C, Semmelhack MF & Bassler BL (2011) Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems: Vibrio quorum-sensing systems. <i>Molecular Microbiology</i> <b>79</b> 1407–1417 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472">https://www.ncbi.nlm.nih.gov/pubmed/21219472</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="https://2013.igem.org/Team:SCUT">https://2013.igem.org/Team:SCUT</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Zhang Y, Chou JH, Bradley J, Bargmann CI & Zinn K (1997) The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. <i>Proceedings of the National Academy of Sciences</i> <b>94</b> 12162–12167 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Audet M & Bouvier M (2012) Restructuring G-Protein- Coupled Receptor Activation. <i>Cell</i> <b>151</b> 14–2 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/2302121">https://www.ncbi.nlm.nih.gov/pubmed/2302121</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Kang Z, Huang H, Zhang Y, Du G & Chen J (2017) Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. <i>World Journal of Microbiology and Biotechnology</i> <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/27905091">https://www.ncbi.nlm.nih.gov/pubmed/27905091</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Huang Y (2012) Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. <i>Experimental and Therapeutic Medicine</i> <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T & Thammasirirak S (2011) Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. <i>Developmental & Comparative Immunology</i> <b>35</b> 545–553 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/21184776">https://www.ncbi.nlm.nih.gov/pubmed/21184776</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Preecharram S, Jearranaiprepame P, Daduang S, Temsiripong Y, Somdee T, Fukamizo T, Svasti J, Araki T & Thammasirirak S (2010) Isolation and characterisation of crocosin, an antibacterial compound from crocodile (Crocodylus siamensis) plasma: CROCODILE PLASMA ANTIBACTERIAL COMPOUND. <i>Animal Science Journal</i> <b>81</b> 393–401 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/2059789">https://www.ncbi.nlm.nih.gov/pubmed/2059789</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Prajanban B, Jangpromma N, Araki T & Klaynongsruang S (2017) Antimicrobial effects of novel peptides cOT2 and sOT2 derived from Crocodylus siamensis and Pelodiscus sinensis ovotransferrins. <i>Biochimica et Biophysica Acta (BBA) - Biomembranes</i> <b>1859</b> 860–869 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/28159460">https://www.ncbi.nlm.nih.gov/pubmed/28159460</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Yaraksa N, Anunthawan T, Theansungnoen T, Daduang S, Araki T, Dhiravisit A & Thammasirirak S (2014) Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. <i>Journal of Antibiotics</i> <b>67</b> 205 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554">https://www.ncbi.nlm.nih.gov/pubmed/24192554</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | Marín-Medina N, Ramírez DA, Trier S & Leidy C (2016) Mechanical properties that influence antimicrobial peptide activity in lipid membranes. <i>Applied Microbiology and Biotechnology</i> <b>100</b> 10251–10263 <br /> | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316">https://www.ncbi.nlm.nih.gov/pubmed/27837316</a> | ||
+ | </li> | ||
+ | </ol> | ||
+ | </section> | ||
− | / | + | <style> |
+ | .links_end{ | ||
+ | background: none; | ||
+ | } | ||
+ | .links_end table{ | ||
+ | width:100%; | ||
+ | } | ||
+ | .links_end th, .links_end td{ | ||
+ | font-size:18pt; | ||
+ | padding:10px; | ||
+ | } | ||
+ | .links_end td{ | ||
+ | |||
+ | border:solid #eee 1px; | ||
+ | } | ||
+ | </style> | ||
− | + | <section class="links_end"> | |
− | + | <table> | |
− | + | <tr> | |
+ | <th colspan="3"> | ||
+ | Strategy pages | ||
+ | </th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><i>Description</i></td> | ||
+ | <td><a href="https://2017.igem.org/Team:INSA-UPS_France/Design">Design</a></td> | ||
+ | <td><a href="https://2017.igem.org/Team:INSA-UPS_France/Parts">Parts</a></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | </section> | ||
− | + | </div> | |
− | + | <!-- fin section --> | |
− | + | ||
− | + | </div> | |
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
<footer> | <footer> | ||
Line 295: | Line 407: | ||
<a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a> | <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a> | ||
<a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a> | <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a> | ||
+ | <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a> | ||
+ | <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a> | ||
<a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a> | <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a> | ||
<a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a> | <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a> | ||
Line 313: | Line 427: | ||
</div> | </div> | ||
</main> | </main> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- C O N T E N T --> | <!-- C O N T E N T --> | ||
− | |||
− | |||
− | |||
− | |||
<script type="text/javascript"> | <script type="text/javascript"> | ||
$('.main_content').scroll(function(){ | $('.main_content').scroll(function(){ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
var pos = $('.main_content').scrollTop(); | var pos = $('.main_content').scrollTop(); | ||
// BOLD ASIDE NAV | // BOLD ASIDE NAV | ||
Line 350: | Line 448: | ||
$('*[data-number="6"]').css("font-weight", "normal"); | $('*[data-number="6"]').css("font-weight", "normal"); | ||
$('*[data-number="6"]').parent().removeClass("selected-item"); | $('*[data-number="6"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="7"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="8"]').parent().removeClass("selected-item"); | ||
if(pos>$("#a2").position().top-10){ | if(pos>$("#a2").position().top-10){ | ||
$('*[data-number="1"]').css("font-weight", "normal"); | $('*[data-number="1"]').css("font-weight", "normal"); | ||
Line 363: | Line 465: | ||
$('*[data-number="6"]').css("font-weight", "normal"); | $('*[data-number="6"]').css("font-weight", "normal"); | ||
$('*[data-number="6"]').parent().removeClass("selected-item"); | $('*[data-number="6"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="7"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="8"]').parent().removeClass("selected-item"); | ||
if(pos>$("#a3").position().top-10){ | if(pos>$("#a3").position().top-10){ | ||
$('*[data-number="1"]').css("font-weight", "normal"); | $('*[data-number="1"]').css("font-weight", "normal"); | ||
Line 376: | Line 482: | ||
$('*[data-number="6"]').css("font-weight", "normal"); | $('*[data-number="6"]').css("font-weight", "normal"); | ||
$('*[data-number="6"]').parent().removeClass("selected-item"); | $('*[data-number="6"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="7"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="8"]').parent().removeClass("selected-item"); | ||
if(pos>$("#a4").position().top-10){ | if(pos>$("#a4").position().top-10){ | ||
$('*[data-number="1"]').css("font-weight", "normal"); | $('*[data-number="1"]').css("font-weight", "normal"); | ||
Line 389: | Line 499: | ||
$('*[data-number="6"]').css("font-weight", "normal"); | $('*[data-number="6"]').css("font-weight", "normal"); | ||
$('*[data-number="6"]').parent().removeClass("selected-item"); | $('*[data-number="6"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="7"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="8"]').parent().removeClass("selected-item"); | ||
if(pos>$("#a5").position().top-10){ | if(pos>$("#a5").position().top-10){ | ||
$('*[data-number="1"]').css("font-weight", "normal"); | $('*[data-number="1"]').css("font-weight", "normal"); | ||
Line 402: | Line 516: | ||
$('*[data-number="6"]').css("font-weight", "normal"); | $('*[data-number="6"]').css("font-weight", "normal"); | ||
$('*[data-number="6"]').parent().removeClass("selected-item"); | $('*[data-number="6"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="7"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="8"]').parent().removeClass("selected-item"); | ||
if(pos>$("#a6").position().top-10){ | if(pos>$("#a6").position().top-10){ | ||
$('*[data-number="1"]').css("font-weight", "normal"); | $('*[data-number="1"]').css("font-weight", "normal"); | ||
Line 415: | Line 533: | ||
$('*[data-number="6"]').css("font-weight", "bold"); | $('*[data-number="6"]').css("font-weight", "bold"); | ||
$('*[data-number="6"]').parent().addClass("selected-item"); | $('*[data-number="6"]').parent().addClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="7"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="8"]').parent().removeClass("selected-item"); | ||
+ | if(pos>$("#a7").position().top-10){ | ||
+ | $('*[data-number="1"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="1"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="2"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="2"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="3"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="3"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="4"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="4"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="5"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="5"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="6"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="6"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "bold"); | ||
+ | $('*[data-number="7"]').parent().addClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="8"]').parent().removeClass("selected-item"); | ||
+ | if(pos>$("#a8").position().top-10){ | ||
+ | $('*[data-number="1"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="1"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="2"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="2"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="3"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="3"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="4"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="4"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="5"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="5"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="6"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="6"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="7"]').css("font-weight", "normal"); | ||
+ | $('*[data-number="7"]').parent().removeClass("selected-item"); | ||
+ | $('*[data-number="8"]').css("font-weight", "bold"); | ||
+ | $('*[data-number="8"]').parent().addClass("selected-item"); | ||
+ | } | ||
+ | } | ||
} | } | ||
} | } |
Latest revision as of 09:49, 12 December 2017
Synthetic biology is based on Nature everlasting possibilities, usually by inserting genetic information from microorganisms into a single and unique chassis1,2,3. However, a single chassis could present inevitable limits (high genetic burden, incompatibility of some elements with the chassis, too complex design…). These start to be a limit in synthetic biology, its perspectives and applications4. An emerging solution is the use of synthetic consortium (figure 1). Synthetic consortium have the advantage to require less amount of genetic information into a single chassis to achieve the required process since different microorganisms can share the genetic burden. Moreover, the components of the consortium could be selected to reduce the genetic modifications and increase the chance of success, for example, by taking advantage of already existing signaling or metabolic pathways. Several successes of those synthetic consortia, such as production of bio-electricity5 or shortening bio-manufacturing process like C-vitamin synthesis6 have provided insight into the strength of this approach.
Such approaches are still rare in the iGEM competition, maybe because they require to combine classic strain engineering with information processing strategies. So, our challenge was to demonstrate the power and feasibility of synthetic consortium approach to open new perspectives and applications to iGEMers.
As a proof of concept, we developed a strategy against cholera. It is based on a cascade of events starting from an engineered Escherichia coli strain mimicking Vibrio cholerae. It triggers a sensor bacterium, Vibrio harveyi, which in turn activates the effector cell (the yeast Pichia pastoris). The later eradicates Vibrio species by producing innovative antimicrobial peptides from crocodile.
While we were defining our strategy, a cholera epidemia started unfortunately to expand in Yemen7. This terrible situation led us to focus on this problematic as it appears that current solutions are not efficient enough to deal with this situation. The bacteria V. cholerae, agent of the cholera disease, is usually found in water and infects more than a million people each year.
Recently, academic research groups started to focus on synthetic biology in order to find a way to deal with V. cholerae8,9. Additionally, some iGEM teams tried also to deal with the challenging detection of V. cholerae10,11,12, using E. coli. They based their strategy on implementing the quorum sensing detection pathway of V. cholerae into E. coli to activate reporter gene expression. However these projects, no matter how clever and brilliant they might be, were not successful enough, likely due the complexity of introducing a large amount of DNA information in a single microorganism. This is the reason why we built a synthetic consortium of microorganisms. Using multiple microorganisms instead of one will allow us to choose existing species that are already specialized for their tasks, as well as reducing the amount of necessary modification to set up the required functions. The information processing steps have been split in two different microorganisms: V. harveyi as the sensor and P. pastoris as the effector, with the system triggered by V. cholerae presence.
The whole synthetic consortium is composed of three microorganisms. The first one should be V. cholerae but for safety reason, we engineered an E. coli strain to produce a V. cholerae molecular signal. The second bacteria required a quorum sensing pathway to detect V. cholerae signal. V. harveyi naturally possesses such pathway and we engineered it to make it able to sense V. cholerae. We also engineered V. harveyi to make it producing a second molecule messenger. The third microorganism, P. pastoris was engineered to detect this messenger and produce in response the secretion of a high amount of antimicrobial peptides that can lyse V. cholerae.
We finally created an artificial consortium chassis to deal with cholera disease. The different partners are deeper described below.
An interesting property of V. cholerae is its quorum sensing autoinducer system based on the production of CAI-1 molecule13. The amount of this secreted molecule, produced by the enzyme CqsA synthase, is an efficient reporter of the quantity of bacteria in water. As we were not allowed to work with pathogens in our lab, we engineered the strain E. coli in order to mimic V. cholerae. E. coli was transformed with the cqsA gene from V. cholerae. Since our sensor was V. harveyi, as a proof of concept, we also transformed an E. coli strain with the cqsA encoding gene of V. harveyi. This Vh_CqsA enzyme synthetizes C8-CAI-1, an analog of V. cholerae CAI-114.
We therefore developed E. coli strains which produce markers simulating the presence of Vibrio species in the medium.
The easiest way to detect CAI-1 or C8-CAI-1 is to use the quorum sensing pathway of the non-pathogen V. harveyi. As our project will deal directly with V. cholerae in real situation, the CqsS receptor of V. harveyi will have to also recognize the CAI-1 molecule13. To do so, a single mutation was introduced in the gene cqsS changing the phenylalanine 175 into a cysteine.
When C8-CAI-1 binds to CqsS this activate a dephosphorylation cascade leading to the inhibition of the pQRR4 promoter and blocking the transcription of siRNA14. In the absence of this siRNA, translation of the targets genes (i.e. virulence genes) is activated (See Figure 2). We used this system to produce the molecule (i.e. diactetyl) used to activate P. pastoris . The als coding sequence, encoding for the acetolactate synthase Als, is involved in the conversion of endogenous pyruvate into diacetyl (Figure 3). als was placed under the control of pQRR4 promoter. In this engineered V. Harveyi strain , diacetyl production will be produced in response to both CAI-1 or C8-CAI-1.
The function of the third partner is to efficiently produce a killing molecule (i.e. anti-microbial peptides, AMPs) to lyse both V. cholerae and V. harveyi. This microorganism has to be resistant to the AMPs that are specific to prokaryotic cells. Therefore we chose an eukaryotic cell. Last this eukaryotic microorganism has to communicate with prokaryotic cell. Team SCUT 15 previously described a binding-receptor system involving diacetyl and a eukaryotic receptor, Odr-10 16,17. It is a G Protein Coupled Receptor isolated from Caenorhabditis elegans that once activated by diacetyl, lead to the activation of the pFUS1 promoter through the endogeneous Ste12 pathway (Figure 4). For all this reasons, we chose P. pastoris as the effector organism since it already possess the ste12 pathway and is good protein producer 18,19.
We engineered the yeast to secret the AMPs under control of the pFUS1 promotor. We choose the AMPs from crocrodiles 20,21,22,23. Indeed crocodiles display a remarkable and efficient defense system, allowing the reptiles to resist to a large spectrum of bacterial infection. Thus, they produced antimicrobial peptides (AMPs) which are able to lyse bacteria such as V. cholerae. AMPs are cationic pore-forming molecules targeting bacterium membranes, causing bacterial lysis and death 24.
See our Design page for more informations about the genetic elements we used!
Description
Synthetic biology: from unique chassis to synthetic consortia
Genesis of our molecular strategy
A microbial consortium chassis against cholera
Mimicking Vibrio cholerae using Escherichia coli
The sensing organism: Vibrio harveyi
The effector organism: Pichia pastoris
Our system
References
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/
https://www.ncbi.nlm.nih.gov/pubmed/26308982
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/
https://www.ncbi.nlm.nih.gov/pubmed/16697733
https://www.ncbi.nlm.nih.gov/pubmed/22001326
https://www.ncbi.nlm.nih.gov/pubmed/21219472
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/
https://www.ncbi.nlm.nih.gov/pubmed/2302121
https://www.ncbi.nlm.nih.gov/pubmed/27905091
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
https://www.ncbi.nlm.nih.gov/pubmed/21184776
https://www.ncbi.nlm.nih.gov/pubmed/2059789
https://www.ncbi.nlm.nih.gov/pubmed/28159460
https://www.ncbi.nlm.nih.gov/pubmed/24192554
https://www.ncbi.nlm.nih.gov/pubmed/27837316
Strategy pages
Description
Design
Parts