Difference between revisions of "Team:Tuebingen/Inspiration"

 
(19 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<html lang="en">  
+
<html lang="en">
 
<head>
 
<head>
     <title> iGem Tübingen 2017</title>
+
     <title> iGEM Tübingen 2017</title>
 
     <meta charset="utf-8" content="width=device-width, initial-scale=1.0"> <!--damit die ü, ä usw. richtig angezeigt werden-->
 
     <meta charset="utf-8" content="width=device-width, initial-scale=1.0"> <!--damit die ü, ä usw. richtig angezeigt werden-->
 
     <style>
 
     <style>
 
      
 
      
       
 
       
 
       
 
        **********OVERRIDES**********
 
  
#top_menu_under {
+
#ImpressumSponsoren{
  display: none;
+
            bottom:0px;
  position: relative;
+
            margin-left: 25em;
  width: 100%;
+
            margin-bottom: 5em;
  height: 0;
+
            margin-right: 10em;
}
+
            text-align: right;
#top_menu_14 {
+
        }
  position: fixed;
+
 
  width: 100%;
+
 
  top: 0px;
+
html, body {
  left: 0px;
+
    height: 100%;
  height: 16px;
+
    width: 100%;
  background-color: #383838;
+
    margin-left: 0px;
  border-bottom: 2px solid black;
+
    padding: 0;
  z-index: 50;
+
}
+
#top_title {
+
  display: none;
+
}
+
#sideMenu {
+
  display: none;
+
  width: 170px;
+
  position: absolute;
+
  top: 20px;
+
  left: 1020px;
+
  z-index: 10;
+
  padding-top: 0px;
+
  padding-bottom: 15px;
+
  padding-left: 15px;
+
  padding-right: 15px;
+
  background-color: white;
+
  text-align: left;
+
}
+
#bodyContent a[href ^="https://"],
+
.link-https {
+
  background: none;
+
  padding: 0
+
}
+
#bodyContent a[href ^="mailto:"], .link-mailto {
+
  padding:0;
+
}
+
#content {
+
width:100%;
+
}
+
.pop_why_cover {
+
  display: none;
+
  z-index: 50;
+
  margin-top: -65px;
+
  margin-left: -40px;
+
  width: 980px;
+
  height: 2100px;
+
  float: left;
+
  position: absolute;
+
  opacity: 0.5;
+
  background-color: #b2b2b2;
+
}
+
.pop_why_box {
+
  display: none;
+
  left: 250px;
+
  top: 0px;
+
  background-color: white;
+
  padding: 15px;
+
  width: 500px;
+
  position: absolute;
+
  border: 3px solid #4e606e;
+
  border-radius: 3px;
+
  z-index: 50;
+
 
}
 
}
  
 +
#BigImageLab{
 +
    padding: 0;
 +
    background-size: cover;
 +
    display: block;
 +
    margin: 0 auto;
 +
    margin-left: 0px;
 +
    margin-top: -10em;
  
**********END OF OVERRIDES**********
+
    max-height: 66%;
 +
    max-width: 100%;
 +
   
 +
    width: 100%;
 +
    height: 99%;
 +
    border: none;
 +
}
 
          
 
          
 +
       
 +
       
 +
               
 +
#home_logo, #sideMenu { display:none; }
 +
  #sideMenu, #top_title, .patrollink  {display:none;}
 +
  #content { width:100%; padding:0px;  margin-top:-7px; margin-left:0px;}
 +
  body {background-color:white; }
 +
  #bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
 +
 
          
 
          
 
          
 
          
Line 109: Line 74:
 
          
 
          
 
     a:hover{
 
     a:hover{
background-color: black;
+
    background-color: transparent;
color:grey;
+
    color:grey;
 
     background-color: transparent;
 
     background-color: transparent;
 
}
 
}
 
          
 
          
 
div.Hauptnavigation{
 
div.Hauptnavigation{
     top: 1em;
+
    text-align: right;
 +
    word-spacing: 0.5;
 +
   
 +
     top: 0.9em;
 
     background-color: rgb(240,240,250);
 
     background-color: rgb(240,240,250);
 
     position: fixed;
 
     position: fixed;
 
     width: 100%;
 
     width: 100%;
     height: 1.25em;
+
     height: 2em;
     font-size: 1.5em;
+
     font-size: 1.4em;
     line-height: 1.5em;   
+
     line-height: 1.6em;   
 
     text-align: center;
 
     text-align: center;
     margin-bottom: 1em;
+
     margin-bottom: 0;
 +
    margin-left: 0px;
 +
 
 +
background: linear-gradient(white, transparent 99%);
 
}
 
}
  
Line 130: Line 101:
  
 
nav.Unternavigation-Team{
 
nav.Unternavigation-Team{
 +
  max-width: 20%;
 +
  margin-left:0px;
 
     margin-right: 1.875em;
 
     margin-right: 1.875em;
     margin-bottom: 25em;
+
     margin-top: 12em;
     margin-top: 3em;
+
    padding-left: 2em;
     font-size: 1.5em;
+
     padding-top: 2em;
     line-height:1.5em;
+
    padding-bottom:10em;
     left: 2.5em;
+
     font-size: 0.9em;
     top: 0.5em;
+
     line-height:2.3em;
     position: fixed;   
+
     left: 0em;
   
+
     top: 3.5em;
 +
    bottom: -7em;
 +
     position: sticky;   
 +
background: linear-gradient(90deg,white, transparent 70%);
 
}
 
}
  
Line 149: Line 125:
  
 
.active{
 
.active{
background-color: black;
+
    background-color: transparent;
color: white;
+
    color: white;
 
}
 
}
 
 
img#BigImageLab {
 
    background-size: cover;
 
    width: 100%;
 
    border: 5px solid #000000;
 
}
 
 
  
  
Line 168: Line 136:
 
     grid-template-rows: auto;
 
     grid-template-rows: auto;
 
     margin-bottom: 5em;
 
     margin-bottom: 5em;
     margin-top: 2em;
+
     margin-top: -18em;
 
    
 
    
 
}
 
}
Line 179: Line 147:
 
             margin-left: 20em;
 
             margin-left: 20em;
 
             margin-right: 10em;
 
             margin-right: 10em;
            margin-top: 1.75em;
 
 
}
 
}
 
         #Fliesstext2{       
 
         #Fliesstext2{       
Line 190: Line 157:
 
             margin-top: 1.75em;
 
             margin-top: 1.75em;
 
}
 
}
 
+
 
          
 
          
 +
/*table setup*/
 
table, th, td {
 
table, th, td {
    border: 1px solid black;
+
  table-layout: fixed;
    border-collapse: collapse;
+
  width: 100%;
    padding: 5px;
+
  margin: auto -5px;
    text-align: center;
+
 +
  border: 1px solid black;
 +
  border-collapse: collapse;
 +
  padding: 0px;
 +
  text-align: center;
 
}     
 
}     
               
+
 
 +
h1{font-weight:light;
 +
font-size: 1.2em;
 +
padding-bottom: 1em;
 +
margin-bottom:2em;
 +
}
 +
h2{font-weight:normal;
 +
font-size:1em;
 +
padding-bottom: 1em;
 +
margin-top:-2em;
 +
}
 +
h3{font-weight:normal;
 +
font-size:0.8em;
 +
padding-bottom: 1em;
 +
margin-top: 1em;
 +
}
 +
p{font-weight:lighter;
 +
font-size: 1.5em;
 +
line-height:2em;
 +
 
 +
}
 +
li{font-weight:lighter;
 +
font-size: 0.7em;
 +
}
 +
th{font-weight:200;
 +
font-size:0.8em;
 +
}
 +
td{font-weight:lighter;
 +
font-size:0.8em;
 +
}
 +
 
 +
caption{text-align:left;
 +
    font-size: 0.7em;
 +
    margin-bottom: 0.4em;
 +
}
 +
 
 +
figcaption{
 +
font-weight:lighter;
 +
font-size:0.7em;
 +
margin-top:0.5em;
 +
}
 +
 
 
#Bild{
 
#Bild{
 
     grid-column-start: 0;
 
     grid-column-start: 0;
Line 209: Line 222:
 
}
 
}
 
          
 
          
 +
#Inspiration_figure1 {width:50%;}
 +
#Inspiration_figure2 {width:50%;}
 +
#Inspiration_figure3 {width:50%;}
 +
#Inspiration_figure4 {width:50%;}
 +
#Inspiration_figure5 {width:50%;}
 
          
 
          
 
     </style>
 
     </style>
 
</head>
 
</head>
 
      
 
      
 +
<body>     
 +
      <div class="Hauptnavigation" >
 +
      <a href="https://2017.igem.org/Team:Tuebingen">
 +
      <img src="https://static.igem.org/mediawiki/2017/thumb/b/bb/T--Tuebingen--TrojHorse.png/293px-T--Tuebingen--TrojHorse.png"
 +
                alt="Logo Trojan Horse"
 +
                style="max-height:70%; max-width:90%;float:left; margin-left: 2.5em;margin-top:2px;"> 
 +
      </a>         
 +
     
 +
 +
        <a href="https://2017.igem.org/Team:Tuebingen/Team" style="margin-right:1.5em;">Team</a>
 +
        <a href="https://2017.igem.org/Team:Tuebingen/Inspiration"style="margin-right:1.5em;">Inspiration</a>
 +
        <a href="https://2017.igem.org/Team:Tuebingen/Demonstrate"style="margin-right:1.5em;">Results</a>
 +
        <a href="https://2017.igem.org/Team:Tuebingen/HP"style="margin-right:1.5em;">Human Practice</a>
 +
        <a href="https://2017.igem.org/Team:Tuebingen/Lab"style="margin-right:1.5em;">Lab</a>
 +
        <a href="https://2017.igem.org/Team:Tuebingen/Attributions"style="margin-right:1.5em;">Attributions</a>
 +
      </div>
 +
     
 +
  <div style="max-width:100%;">
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b7/T--Tuebingen--Inspiration_Books.jpg" id="BigImageLab">
 +
 
 
      
 
      
    <body>  
+
      <div  style="position: absolute; text-align:right;
 +
                                margin-bottom: 10%;
 +
                                margin-left: 60%;
 +
                                margin-top:-4em;
 +
                                font-size: 3em;color:white;font-weight:light;letter-spacing: 3px;"> inspiration
 +
                </div> </div>
 
        
 
        
      <div class="Hauptnavigation">
+
 
          <a href="https://2017.igem.org/Team:Tuebingen/Team">Team</a>
+
          <a href="https://2017.igem.org/Team:Tuebingen/Inspiration">Inspiration</a>
+
          <a href="https://2017.igem.org/Team:Tuebingen/Results">Results</a>
+
          <a href="https://2017.igem.org/Team:Tuebingen/Human Practice">Human Practice</a>
+
          <a href="https://2017.igem.org/Team:Tuebingen/Lab">Lab</a>
+
          <a href="https://2017.igem.org/Team:Tuebingen/Attribution">Attribution</a>
+
    </div>
+
 
        
 
        
     
+
 
      <nav class="Unternavigation-Team">
+
      <nav class="Unternavigation-Team">  
         
+
 
               <a href="#Antibiotic Research at stake">Antibiotic Research at stake </a> <br>
 
               <a href="#Antibiotic Research at stake">Antibiotic Research at stake </a> <br>
 
               <a href="#Introducing the aminocoumarins">Introducing the aminocoumarins </a> <br>
 
               <a href="#Introducing the aminocoumarins">Introducing the aminocoumarins </a> <br>
Line 238: Line 273:
 
        
 
        
 
        
 
        
           <img src="https://static.igem.org/mediawiki/2017/8/8c/T--Tuebingen--LabTitle.jpg" alt="InterLabBild" id="BigImageLab">
+
            
 
            
 
            
 
           <div class="Grid">
 
           <div class="Grid">
Line 245: Line 280:
 
             <div id="Fliesstext1">   
 
             <div id="Fliesstext1">   
 
                 <h1 id="Inspiration" >Inspiration</h1>
 
                 <h1 id="Inspiration" >Inspiration</h1>
                 <h2 id="Antibiotic Research at stake" class="anchor">Nothing in pipeline? - The problem of modern antibiotic research</h2>         
+
                 <h2 id="Antibiotic Research at stake" class="anchor">Nothing in pipeline? -  
 +
The problem of modern antibiotic research</h2>         
 
                  
 
                  
                 <p>Worldwide globalisation and a rising world population creates a new problem for our society: Pathogens acquire mutations and different resistance factors leaving us with less and less effective antimicrobials. The World Health Organisation (WHO) considers the most problematic organisms to be multi-resistant Mycobacterium tuberculosis, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and many others (Geneva: World Health Organization 2017).</p>   
+
                 <p>Worldwide globalisation and a rising world population creates a new problem for our society:  
 +
Pathogens acquire mutations and different resistance factors leaving us with less and less  
 +
effective antimicrobials. The World Health Organisation (WHO) considers the most problematic  
 +
organisms to be multi-resistant Mycobacterium tuberculosis, Acinetobacter baumannii,  
 +
Pseudomonas aeruginosa, Staphylococcus aureus, and many others (Geneva: World Health Organization  
 +
2017).</p>   
 
              
 
              
 
               <figure>
 
               <figure>
                 <img src=”https://static.igem.org/mediawiki/2017/1/1d/T--Tuebingen--Inspiration_figure1.png” id=”Inspiration_figure1”>
+
                 <img src="https://static.igem.org/mediawiki/2017/1/1d/T--Tuebingen--Inspiration_figure1.png"
                 <figcaption> Figure 1: Increase in antibiotic resistances in methicillin resistant s.aureus, vancomycin resistant enterococci and fluoroquinolone resistant p.aeruginosa in the last 30 years (source: Infectious disease society of America 2004) </figcaption>
+
id="Inspiration_figure1">
 +
                 <figcaption> Figure 1: Increase in antibiotic resistances in methicillin resistant  
 +
s.aureus, vancomycin resistant enterococci and fluoroquinolone resistant p.aeruginosa in the  
 +
last 30 years (source: Infectious disease society of America 2004) </figcaption>
 
               </figure>
 
               </figure>
  
                 <p>Besides fighting antibiotic misuse by raising awareness and health education to decrease the number of new resistant bacteria, there is a necessity for new antibacterial substances and therapies. This lies within the responsibility of universities and companies. In contrast, every year, the FDA approves less and less new antibacterial compounds. This is due to the fact, that research in the field of new antibiotics  for pharmaceutical companies is not attractive: New substances are usually only used as reserve antibiotics for patients suffering from infections with highly resistant pathogens and therefore provides in its patented period only a low budget income.</p>
+
                 <p>Besides fighting antibiotic misuse by raising awareness and health education to decrease  
 +
the number of new resistant bacteria, there is a necessity for new antibacterial substances  
 +
and therapies. This lies within the responsibility of universities and companies. In contrast,
 +
every year, the FDA approves less and less new antibacterial compounds. This is due to the fact,
 +
that research in the field of new antibiotics  for pharmaceutical companies is not attractive:
 +
New substances are usually only used as reserve antibiotics for patients suffering from infections
 +
with highly resistant pathogens and therefore provides in its patented period only a low budget  
 +
income.</p>
 
              
 
              
 
               <figure>
 
               <figure>
               <img src=”https://static.igem.org/mediawiki/2017/5/50/T--Tuebingen--Inspiration_figure2.png” id=”Inspiration_figure2”>
+
               <img src="https://static.igem.org/mediawiki/2017/5/50/T--Tuebingen--Inspiration_figure2.png"
               <figcaption> Figure 2: number of antibacterial new drug-applications by the FDA (source: CDC antibiotic/antimicrobial resistance report)
+
  id="Inspiration_figure2">
 +
               <figcaption> Figure 2: number of antibacterial new drug-applications by the FDA  
 +
  (source: CDC antibiotic/antimicrobial resistance report)
 
               </figcaption>
 
               </figcaption>
 
               </figure>
 
               </figure>
  
                 <p> Most new antibiotic substances are found in new bacterial strains, while (bio-)chemically modified compounds are rather rare. At the same time, it gets harder to identify new potent candidates. We need new strategies to produce effective compounds that are specifically engineered to fight resistant pathogens and new methods to achieve these modifications. This is where antibiotic classes, that provide potency in theory, but fail in compliance and practical application, come into play. </p>
+
                 <p> Most new antibiotic substances are found in new bacterial strains, while (bio-)chemically
 +
modified compounds are rather rare. At the same time, it gets harder to identify new potent  
 +
candidates. We need new strategies to produce effective compounds that are specifically engineered
 +
to fight resistant pathogens and new methods to achieve these modifications. This is where antibiotic
 +
classes, that provide potency in theory, but fail in compliance and practical application, come into
 +
play. </p>
  
              </div>
 
             
 
              <div id="Fliesstext2"> 
 
 
                
 
                
                 <h2 id="Introducing the aminocoumarins" class="anchor"> Introducing the aminocoumarins: potent antibiotics with little relevance in clinical therapy </h2>         
+
                 <h2 id="Introducing the aminocoumarins" class="anchor"> Introducing the aminocoumarins: potent  
 +
antibiotics with little relevance in clinical therapy </h2>         
 
                  
 
                  
                 <p> Aminocoumarins are one of many substance classes with almost no use in the antibacterial therapy. So far, three aminocoumarins are known: Novobiocin, Clorobiocin and Coumermycin A1. (Heide 2014) Furthermore, the structurally different Simocyclinone D8 has been described as a fourth aminocoumarin (Schimana et al. 2000).
+
                 <p> Aminocoumarins are one of many substance classes with almost no use in the antibacterial therapy.
 +
So far, three aminocoumarins are known: Novobiocin, Clorobiocin and Coumermycin A1. (Heide 2014)  
 +
Furthermore, the structurally different Simocyclinone D8 has been described as a fourth aminocoumarin
 +
(Schimana et al. 2000). </p>
 
               <figure>
 
               <figure>
               <img src=”https://static.igem.org/mediawiki/2017/7/7f/T--Tuebingen--Inspiration_figure3.png” id=”Inspiration_figure3”>
+
               <img src="https://static.igem.org/mediawiki/2017/7/7f/T--Tuebingen--Inspiration_figure3.png"
 +
  id="Inspiration_figure3">
 
               <figcaption> Figure 3: Basic structure of aminocoumarins (based on Heide 2014)
 
               <figcaption> Figure 3: Basic structure of aminocoumarins (based on Heide 2014)
 
               </figcaption>
 
               </figcaption>
 
               </figure>
 
               </figure>
  
                 <p> All aminocoumarins produced by different streptomyces species have an aminocoumarin (Figure 3 green) and a deoxyribose (Figure 3 blue) moiety in common. Aminocoumarins irreversibly bind to and inhibit the B subunit of the bacterial gyrase and therefore prevent the cell from successful mitosis (Lawson and Stevenson 2012). The human topoisomerase II is a known off-target, which can cause toxicity when highly dosed. Resistances are mediated by unspecific multidrug exporters (MDR) or mutations in the gyrase binding pockets. The latter are only found in aminocoumarin producing Streptomyces strains or bacteria that were forced to mutate by selection under low dose aminocoumarin application (Fujimoto-Nakamura et al. 2005).
+
                 <p> All aminocoumarins produced by different streptomyces species have an aminocoumarin  
 +
(Figure 3 green) and a deoxyribose (Figure 3 blue) moiety in common. Aminocoumarins irreversibly bind  
 +
to and inhibit the B subunit of the bacterial gyrase and therefore prevent the cell from successful  
 +
mitosis (Lawson and Stevenson 2012). The human topoisomerase II is a known off-target, which can
 +
cause toxicity when highly dosed. Resistances are mediated by unspecific multidrug exporters (MDR)
 +
or mutations in the gyrase binding pockets. The latter are only found in aminocoumarin producing
 +
Streptomyces strains or bacteria that were forced to mutate by selection under low dose aminocoumarin
 +
application (Fujimoto-Nakamura et al. 2005).
 
                   <br>
 
                   <br>
                     Disadvantages that prevent aminocoumarins from more frequent clinical use include path of administration (i.v. only), a narrow efficacy spectrum (no gram-negative bacteria are affected), unfavorable pharmacokinetics caused by a low water solubility or irritations at the injection spot caused by toxicity due to a slow drug distribution in the blood (Grayson et al 2010). So far, Novobiocin is the only aminocoumarin approved by the FDA for antibiotic therapy. Lately, studies have found beneficial results for cancer therapies with topoisomerase II inhibitors in combination with Novobiocin.
+
                     Disadvantages that prevent aminocoumarins from more frequent clinical use include path of
                </p>
+
administration (i.v. only), a narrow efficacy spectrum (no gram-negative bacteria are affected),
            </div>
+
unfavorable pharmacokinetics caused by a low water solubility or irritations at the injection  
<div id="Fliesstext3">
+
spot caused by toxicity due to a slow drug distribution in the blood (Grayson et al 2010).
<h2 id="Engineering the warhead" class="anchor">Engineering the warhead: the ß-lactam motive as an activator in resistant bacteria</h2>
+
So far, Novobiocin is the only aminocoumarin approved by the FDA for antibiotic therapy.
<p> Our way to a new aminocoumarin antibiotic with an activation mechanism started with the question, which of the known aminocoumarins our substance should be based on. We decided to work with clorobiocin, as it is not used as antibiotic in its current form and provides perfect circumstances for different chemical modifications. <br>
+
Lately, studies have found beneficial results for cancer therapies with topoisomerase II
A basic aminocoumarin provides three sites open to (bio-)chemical modifications without loss of activity: While R1 allows little modification, as this part of the molecule is synthesised first (further involved enzymes wouldn't recognize their new substrate) and R2 can only be substituted with small chemical groups to retain the antibacterial properties, R3 provides the biggest variety in possible substrates. For an effective gyrase inhibition a nonpolar, hydrophobic moiety at R3 is preferred. Novobiocin and clorobiocin carry an isoprenyl moiety at this position. Therefore, we chose a modification at R3, that lowers the hydrophobic affinity in inactive state but keeps its linear, hydrophobic character after activation. R3 can be modified by knocking out genes in the antibiotic gene cluster that are involved in the synthesis of the para-hydroxy-benzoic acid derivative (Figure 3 red). Afterwards, chemically produced substances are fed to the producing Streptomyces which can then be used by the corresponding amide synthase to connect it with the residual molecule. <br>
+
inhibitors in combination with Novobiocin.</p>
Many multiresistant pathogens acquired different resistances for many antibiotic classes. Frequently these pathogens integrated a kind of ß-lactamase into their genome because of the high frequency of ß-lactam motives in many different antibiotic classes. That's why we decided to use a ß-lactam ring as warhead for our compound: Without cleavage by a ß-lactamase, the aminocoumarin provides a slightly hydrophilic and bigger moiety then an isoprenyl at R3, not allowing an effective binding in the target's gyrase binding pocket, while after cleavage the opened ß-lactam ring mimics a hydrophobic N-isobutyl moiety leading to an effective inhibition (Figure 5). These considerations lead us to our new aminocoumarin Troiacin. <br>
+
 +
<h2 id="Engineering the warhead" class="anchor">Engineering the warhead: the β-lactam motive as an
 +
activator in resistant bacteria</h2>
 +
<p> Our way to a new aminocoumarin antibiotic with an activation mechanism started with the question,
 +
which of the known aminocoumarins our substance should be based on. We decided to work with
 +
clorobiocin, as it is not used as antibiotic in its current form and provides perfect circumstances
 +
for different chemical modifications. <br>
 +
A basic aminocoumarin provides three sites open to (bio-)chemical modifications without loss
 +
of activity: While R1 allows little modification, as this part of the molecule is synthesised
 +
first (further involved enzymes wouldn't recognize their new substrate) and R2 can only be
 +
substituted with small chemical groups to retain the antibacterial properties, R3 provides
 +
the biggest variety in possible substrates. For an effective gyrase inhibition a nonpolar,
 +
hydrophobic moiety at R3 is preferred. Novobiocin and clorobiocin carry an isoprenyl moiety
 +
at this position. Therefore, we chose a modification at R3, that lowers the hydrophobic affinity
 +
in inactive state but keeps its linear, hydrophobic character after activation. R3 can be
 +
modified by knocking out genes in the antibiotic gene cluster that are involved in the synthesis
 +
of the para-hydroxy-benzoic acid derivative (Figure 3 red). Afterwards, chemically produced
 +
substances are fed to the producing Streptomyces which can then be used by the corresponding
 +
amide synthase to connect it with the residual molecule. <br>
 +
Many multiresistant pathogens acquired different resistances for many antibiotic classes.
 +
Frequently these pathogens integrated a kind of β-lactamase into their genome because of the high
 +
frequency of β-lactam motives in many different antibiotic classes. That's why we decided to use
 +
a β-lactam ring as warhead for our compound: Without cleavage by a β-lactamase, the aminocoumarin
 +
provides a slightly hydrophilic and bigger moiety then an isoprenyl at R3, not allowing an
 +
effective binding in the target's gyrase binding pocket, while after cleavage the opened β-lactam
 +
ring mimics a hydrophobic N-isobutyl moiety leading to an effective inhibition (Figure 5). These
 +
considerations lead us to our new aminocoumarin Troiacin. </p>
 
<figure>
 
<figure>
               <img src=”https://static.igem.org/mediawiki/2017/3/32/T--Tuebingen--Inspiration_figure4.png” id=”Inspiration_figure4”>
+
               <img src="https://static.igem.org/mediawiki/2017/3/32/T--Tuebingen--Inspiration_figure4.png"
 +
  id="Inspiration_figure4">
 
               <figcaption> Figure 4: Chemical structure of Troiacin
 
               <figcaption> Figure 4: Chemical structure of Troiacin
 
               </figcaption>
 
               </figcaption>
 
               </figure>
 
               </figure>
  </p>
+
 
</div>
+
             <h2 id="Troiacin - Structural advancement" class="anchor"> Troiacin: Structural advancement leads
            <div id="Fliesstext4">
+
to confined efficacy </h2>
             <h2 id="Troiacin - Structural advancement" class="anchor"> Troiacin: Structural advancement leads to confined efficacy </h2>
+
  
 
               <figure>
 
               <figure>
               <img src=”https://static.igem.org/mediawiki/2017/7/7f/T--Tuebingen--Inspiration_figure3.png” id=”Inspiration_figure3”>
+
               <img src="https://static.igem.org/mediawiki/2017/7/7c/T--Tuebingen--Inspiration_figure5.png" id="Inspiration_figure5">
               <figcaption> Figure 5: Troiacin activation and antibacterial mechanism in ß-lactam resistant pathogens  
+
               <figcaption> Figure 5: Troiacin activation and antibacterial mechanism in β-lactam resistant pathogens  
 
               </figcaption>
 
               </figcaption>
 
               </figure>
 
               </figure>
               <p> Troiacin integrates many of our considerations listed above with our new semi-biosynthetic synthesis. Troiacin has a ß-lactam ring structure similar to the carbapenem ß-lactam allowing an effective cleavage by carbapenem resistant pathogens. While the expected pathogen spectrum remains the same (mainly gram-positive bacteria including S. aureus, Actinobacteria, and M. tuberculosis), we propose that Troiacin has a decreased off-target effect by decreased binding affinity to the human topoisomerase II. Furthermore, it is better soluble in water then clorobiocin leading to a better properties in pharmacokinetics, lower toxicity reactions at the infusion position and a better distribution in the patient's body. Besides, the need of a lower antibiotic dose reduces the risks of off-target effects in the human topoisomerase II even further. Therefore, Troiacin can be used for a positive antibiotic selection in carbapenem resistant bacteria. </p>
+
               <p> Troiacin integrates many of our considerations listed above with our new semi-biosynthetic
 +
  synthesis. Troiacin has a β-lactam ring structure similar to the carbapenem β-lactam allowing an
 +
  effective cleavage by carbapenem resistant pathogens. While the expected pathogen spectrum remains
 +
  the same (mainly gram-positive bacteria including S. aureus, Actinobacteria, and M. tuberculosis),
 +
  we propose that Troiacin has a decreased off-target effect by decreased binding affinity to the human
 +
  topoisomerase II. Furthermore, it is better soluble in water then clorobiocin leading to a better
 +
  properties in pharmacokinetics, lower toxicity reactions at the infusion position and a better
 +
  distribution in the patient's body. Besides, the need of a lower antibiotic dose reduces the risks of
 +
  off-target effects in the human topoisomerase II even further. Therefore, Troiacin can be used for
 +
  a positive antibiotic selection in carbapenem resistant bacteria. </p>
 +
              <br> <br>
  
              </div>
+
          <h2 id="Ref"> References </h2>
 +
             
 +
 
 +
               
 +
 +
<p style="font-size:60%;"> Fujimoto-Nakamura, M., Ito, H., Oyamada, Y., Nishino, T., & Yamagishi, J. (2005). Accumulation of mutations in both gyrB and parE genes is associated with high-level resistance to novobiocin in Staphylococcus aureus. Antimicrob Agents Chemother, 49(9), 3810-3815. doi:10.1128/AAC.49.9.3810-3815.2005 <br> <br>
 +
 
 +
Heide, L. (2014). New aminocoumarin antibiotics as gyrase inhibitors. Int J Med Microbiol, 304(1), 31-36. doi:10.1016/j.ijmm.2013.08.013 <br> <br>
 +
 
 +
Lawson, D. M., & Stevenson, C. E. (2012). Structural and functional dissection of aminocoumarin antibiotic biosynthesis: a review. J Struct Funct Genomics, 13(2), 125-133. doi:10.1007/s10969-012-9138-2 <br> <br>
 +
 
 +
M Lindsay Grayson, S. M. C., James S McCarthy, John Mills, Johan W Mouton, S Ragnar Norrby, David L Paterson, Michael A Pfaller. (2010). Kucers' The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs. <br> <br>
 +
 
 +
Organization, G. W. H. (2017). Prioritization of pathogens to guide discovery, reserach and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. <br> <br>
 +
 
 +
Schimana, J., Fiedler, H. P., Groth, I., Sussmuth, R., Beil, W., Walker, M., & Zeeck, A. (2000). Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tu 6040. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo), 53(8), 779-787.
 +
</p>
 +
 
 +
</div>
 +
                        </div>
 +
<div id="ImpressumSponsoren">
 +
      <img src="https://static.igem.org/mediawiki/2017/5/58/T%C3%BCbingen_Qiagen-Logo.jpeg" id="Quiagen" width=70px>  <img src="https://static.igem.org/mediawiki/2017/1/1c/T%C3%BCbingen_Roth-Logo.jpeg" id="Roth" width=70px>  <img src="https://static.igem.org/mediawiki/2017/d/d8/TuebingenZymoLogo.jpeg" width=150px>  <img src="https://static.igem.org/mediawiki/2017/5/5b/T%C3%BCbingen_Eurofins-Logo.png" id="eurofins" width=150px>    <img src="https://static.igem.org/mediawiki/2017/e/e4/GATCTuebingen.png" id="GATC" width=150px>  <img src="https://static.igem.org/mediawiki/2017/4/49/T%C3%BCbingen_NEB-Logo.jpeg" id="BioLabs" width=150px><br><img src="https://static.igem.org/mediawiki/2017/7/7c/T%C3%BCbingen_Greiner-Logo.jpeg" id="Greiner" width=150px>  <img src="https://static.igem.org/mediawiki/2017/b/bf/T%C3%BCbingen_Agilent-Logo.jpeg" id="Agilent" width=150px>  <img src="https://static.igem.org/mediawiki/2017/0/01/T%C3%BCbingen_abcr-Logo.png" id="abcr" width=150px>  <img src="https://static.igem.org/mediawiki/2017/5/59/MicrosynthTuebingen.png" width=150px>  <img src="https://static.igem.org/mediawiki/2017/8/8b/Eppendorftuebingen.png" width=150px>
 +
        <div> <p> &copy; iGEM Team Tuebingen 2017</p></div>
 +
   
 +
    </div>
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 12:26, 12 December 2017

iGEM Tübingen 2017

inspiration

Inspiration

Nothing in pipeline? - The problem of modern antibiotic research

Worldwide globalisation and a rising world population creates a new problem for our society: Pathogens acquire mutations and different resistance factors leaving us with less and less effective antimicrobials. The World Health Organisation (WHO) considers the most problematic organisms to be multi-resistant Mycobacterium tuberculosis, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and many others (Geneva: World Health Organization 2017).

Figure 1: Increase in antibiotic resistances in methicillin resistant s.aureus, vancomycin resistant enterococci and fluoroquinolone resistant p.aeruginosa in the last 30 years (source: Infectious disease society of America 2004)

Besides fighting antibiotic misuse by raising awareness and health education to decrease the number of new resistant bacteria, there is a necessity for new antibacterial substances and therapies. This lies within the responsibility of universities and companies. In contrast, every year, the FDA approves less and less new antibacterial compounds. This is due to the fact, that research in the field of new antibiotics for pharmaceutical companies is not attractive: New substances are usually only used as reserve antibiotics for patients suffering from infections with highly resistant pathogens and therefore provides in its patented period only a low budget income.

Figure 2: number of antibacterial new drug-applications by the FDA (source: CDC antibiotic/antimicrobial resistance report)

Most new antibiotic substances are found in new bacterial strains, while (bio-)chemically modified compounds are rather rare. At the same time, it gets harder to identify new potent candidates. We need new strategies to produce effective compounds that are specifically engineered to fight resistant pathogens and new methods to achieve these modifications. This is where antibiotic classes, that provide potency in theory, but fail in compliance and practical application, come into play.

Introducing the aminocoumarins: potent antibiotics with little relevance in clinical therapy

Aminocoumarins are one of many substance classes with almost no use in the antibacterial therapy. So far, three aminocoumarins are known: Novobiocin, Clorobiocin and Coumermycin A1. (Heide 2014) Furthermore, the structurally different Simocyclinone D8 has been described as a fourth aminocoumarin (Schimana et al. 2000).

Figure 3: Basic structure of aminocoumarins (based on Heide 2014)

All aminocoumarins produced by different streptomyces species have an aminocoumarin (Figure 3 green) and a deoxyribose (Figure 3 blue) moiety in common. Aminocoumarins irreversibly bind to and inhibit the B subunit of the bacterial gyrase and therefore prevent the cell from successful mitosis (Lawson and Stevenson 2012). The human topoisomerase II is a known off-target, which can cause toxicity when highly dosed. Resistances are mediated by unspecific multidrug exporters (MDR) or mutations in the gyrase binding pockets. The latter are only found in aminocoumarin producing Streptomyces strains or bacteria that were forced to mutate by selection under low dose aminocoumarin application (Fujimoto-Nakamura et al. 2005).
Disadvantages that prevent aminocoumarins from more frequent clinical use include path of administration (i.v. only), a narrow efficacy spectrum (no gram-negative bacteria are affected), unfavorable pharmacokinetics caused by a low water solubility or irritations at the injection spot caused by toxicity due to a slow drug distribution in the blood (Grayson et al 2010). So far, Novobiocin is the only aminocoumarin approved by the FDA for antibiotic therapy. Lately, studies have found beneficial results for cancer therapies with topoisomerase II inhibitors in combination with Novobiocin.

Engineering the warhead: the β-lactam motive as an activator in resistant bacteria

Our way to a new aminocoumarin antibiotic with an activation mechanism started with the question, which of the known aminocoumarins our substance should be based on. We decided to work with clorobiocin, as it is not used as antibiotic in its current form and provides perfect circumstances for different chemical modifications.
A basic aminocoumarin provides three sites open to (bio-)chemical modifications without loss of activity: While R1 allows little modification, as this part of the molecule is synthesised first (further involved enzymes wouldn't recognize their new substrate) and R2 can only be substituted with small chemical groups to retain the antibacterial properties, R3 provides the biggest variety in possible substrates. For an effective gyrase inhibition a nonpolar, hydrophobic moiety at R3 is preferred. Novobiocin and clorobiocin carry an isoprenyl moiety at this position. Therefore, we chose a modification at R3, that lowers the hydrophobic affinity in inactive state but keeps its linear, hydrophobic character after activation. R3 can be modified by knocking out genes in the antibiotic gene cluster that are involved in the synthesis of the para-hydroxy-benzoic acid derivative (Figure 3 red). Afterwards, chemically produced substances are fed to the producing Streptomyces which can then be used by the corresponding amide synthase to connect it with the residual molecule.
Many multiresistant pathogens acquired different resistances for many antibiotic classes. Frequently these pathogens integrated a kind of β-lactamase into their genome because of the high frequency of β-lactam motives in many different antibiotic classes. That's why we decided to use a β-lactam ring as warhead for our compound: Without cleavage by a β-lactamase, the aminocoumarin provides a slightly hydrophilic and bigger moiety then an isoprenyl at R3, not allowing an effective binding in the target's gyrase binding pocket, while after cleavage the opened β-lactam ring mimics a hydrophobic N-isobutyl moiety leading to an effective inhibition (Figure 5). These considerations lead us to our new aminocoumarin Troiacin.

Figure 4: Chemical structure of Troiacin

Troiacin: Structural advancement leads to confined efficacy

Figure 5: Troiacin activation and antibacterial mechanism in β-lactam resistant pathogens

Troiacin integrates many of our considerations listed above with our new semi-biosynthetic synthesis. Troiacin has a β-lactam ring structure similar to the carbapenem β-lactam allowing an effective cleavage by carbapenem resistant pathogens. While the expected pathogen spectrum remains the same (mainly gram-positive bacteria including S. aureus, Actinobacteria, and M. tuberculosis), we propose that Troiacin has a decreased off-target effect by decreased binding affinity to the human topoisomerase II. Furthermore, it is better soluble in water then clorobiocin leading to a better properties in pharmacokinetics, lower toxicity reactions at the infusion position and a better distribution in the patient's body. Besides, the need of a lower antibiotic dose reduces the risks of off-target effects in the human topoisomerase II even further. Therefore, Troiacin can be used for a positive antibiotic selection in carbapenem resistant bacteria.



References

Fujimoto-Nakamura, M., Ito, H., Oyamada, Y., Nishino, T., & Yamagishi, J. (2005). Accumulation of mutations in both gyrB and parE genes is associated with high-level resistance to novobiocin in Staphylococcus aureus. Antimicrob Agents Chemother, 49(9), 3810-3815. doi:10.1128/AAC.49.9.3810-3815.2005

Heide, L. (2014). New aminocoumarin antibiotics as gyrase inhibitors. Int J Med Microbiol, 304(1), 31-36. doi:10.1016/j.ijmm.2013.08.013

Lawson, D. M., & Stevenson, C. E. (2012). Structural and functional dissection of aminocoumarin antibiotic biosynthesis: a review. J Struct Funct Genomics, 13(2), 125-133. doi:10.1007/s10969-012-9138-2

M Lindsay Grayson, S. M. C., James S McCarthy, John Mills, Johan W Mouton, S Ragnar Norrby, David L Paterson, Michael A Pfaller. (2010). Kucers' The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs.

Organization, G. W. H. (2017). Prioritization of pathogens to guide discovery, reserach and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis.

Schimana, J., Fiedler, H. P., Groth, I., Sussmuth, R., Beil, W., Walker, M., & Zeeck, A. (2000). Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tu 6040. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo), 53(8), 779-787.


© iGEM Team Tuebingen 2017