Difference between revisions of "Team:Heidelberg/Sandbox1027"

(Blanked the page)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Heidelberg/header
 
    }}
 
{{Heidelberg/navbar
 
    }}
 
{{Heidelberg/templateus/Mainbody|
 
    Modeling.|
 
    E. coli and M13 titer and fitness|
 
    https://static.igem.org/mediawiki/2017/a/ae/T--Heidelberg--2017_Background_Tiger.jpg|
 
  
    {{Heidelberg/templateus/AbstractboxV2|
 
        Modeling|
 
        With Interactive Modelling iGEM Heidelberg provides a comprehensive set
 
        of tools that not only help to facilitate the implementation of PACE but
 
        also give an intuitive understanding of underlying mechanisms. To control
 
        highly complex processes such as PACE or PALE in a near-ideal way enables
 
        to exploit as much of it's potential as possible. The most important
 
        parameters were determined and examined with ODE systems, solved
 
        analytically or numerically, [stochastic and
 
        distributional] models. As far as possible the models are available
 
        online to make them accessible to anyone interested. When useful, a [tool
 
        for comparison of experimental data and the model] is available.
 
        In addition the Interactive modelling helps to monitor parameters that
 
        cannot be easily be interpreted from raw data, such as [] and combines
 
        different parameters to make useful statements about an experiment.|
 
 
        https://static.igem.org/mediawiki/2017/8/88/T--Heidelberg--2017_modelling-graphical-abstract.svg
 
    }}
 
    {{Heidelberg/templateus/Contentsection|
 
        {{#tag:html|
 
            {{Heidelberg/templateus/Heading|
 
                Introduction
 
            }}
 
            iGEM Heidelberg provides a comprehensive set of models that allows for
 
            both control and evaluation of continuous and discontinuous direction
 
            evolution. The interactive models facilitate regular use of the models
 
            in everyday lab work and are easier to understand as they provide an
 
            intuitive understanding by enabling the user to observe how the model
 
            behaves when parameters are changed.
 
            Predictions from the models helped to design the novel method Predcel to
 
            be both reliable and time efficient.
 
            To get accurate modelling results for the used setup, a selection of
 
            parameters was determined experimentally and included in the models.
 
            As models for different levels of abstraction were needed, a variety of
 
            approaches from ordinary differential equations, delayed
 
            differential equations over stochastic simulations to molecular dynamics
 
            was applied to obtain valuable information on the different aspects of
 
            directed evolution.
 
 
            <h2>Modelling concentrations in one Lagoon</h2>
 
            Here the concentrations \(c\) of uninfected <i>E. coli</i>, infected <i>E. coli</i> and phage producing <i>E. coli</i> as well as the <i>M13</i> phage are modelled. They are denoted with the subscripts \(_{u}\), \(_{i}\), \(_{p}\) and \(_{P}\). If the whole <i>E. coli</i> population is referred to, \(c_{E}\) is used. If an arbitrary <i> E. coli</i> population is meant, the subscript \(_{e}\) is used. The phage concentration \(c_{P}\) refers to the free phage only, phage that are contained in an <i>E. coli</i> they infected are not included.
 
            The used parameters include the time \(t\), the affinity of phage for <i>E. coli</i> \(k\), the duration between infection of an <i>E. coli</i> and the first phage leaving the <i>E. coli</i> \(t_{P}\). The three different <i>E. coli</i> populations each have a division time \(t\) that is denoted with their subscript. The fitness of a phage population is \(f\).
 
        }}
 
   
 
        {{Heidelberg/templateus/Tablebox|
 
            Table 1: Variables and Parameters used in this model |
 
            {{#tag:html|
 
                <table class="table table-bordered mdl-shadow--4dp" XSSCleaned="overflow-x: scroll !important">
 
                    <thead>
 
                        <tr>
 
                            <th>Symbol</th>
 
                            <th>Name in source code</th>
 
                            <th>Value and Unit</th>
 
                            <th>Explanation</th>
 
 
                        </tr>
 
                    </thead>
 
                    <tbody>
 
                        <tr>
 
                            <td>\(c \)</td>
 
                            <td>-</td>
 
                            <td>[cfu] or [pfu] </td>
 
                            <td>colony forming units for <i> E. coli</i> [cfu] or plaque forming units [pfu] for M13 phage</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( _u\)</td>
 
                            <td>-</td>
 
                            <td> - </td>
 
                            <td>Subscript for uninfected <i>E. coli</i></td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( _i\)</td>
 
                            <td>-</td>
 
                            <td> - </td>
 
                            <td>Subscript for infected <i>E. coli</i></td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( _p\)</td>
 
                            <td>-</td>
 
                            <td> - </td>
 
                            <td>Subscript for phage-producing <i>E. coli</i></td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( _e\)</td>
 
                            <td>-</td>
 
                            <td> - </td>
 
                            <td>Subscript any the of <i>E. coli</i> populations on its own</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( _E\)</td>
 
                            <td>-</td>
 
                            <td> - </td>
 
                            <td>Subscript for all populations of <i>E. coli</i> together</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( _P\)</td>
 
                            <td>-</td>
 
                            <td> - </td>
 
                            <td>Subscript for M13 phage</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(c_{c} \)</td>
 
                            <td><pre>capacity</pre></td>
 
                            <td>[cfu/ml]</td>
 
                            <td>Maximum concentration of <i>E. coli</i> possible under given conditions, important for logistic growth</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(t\)</td>
 
                            <td><pre>t</pre></td>
 
                            <td>[min]</td>
 
                            <td>Duration since the experiment modeled was started</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(t_{u} \)</td>
 
                            <td><pre>tu</pre></td>
 
                            <td>\(20\) min</td>
 
                            <td>Duration one division of uninfected <i>E. coli</i></td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(t_{i} \)</td>
 
                            <td><pre>ti</pre></td>
 
                            <td>\(30\) min</td>
 
                            <td>Duration one division of infected <i>E. coli</i></td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(t_{p} \)</td>
 
                            <td><pre>tp</pre></td>
 
                            <td>\(40\) min</td>
 
                            <td>Duration one division of phage producing <i>E. coli</i></td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( t_{P}\)</td>
 
                            <td><pre>tpp</pre></td>
 
                            <td>[min]</td>
 
                            <td>Duration between an <i>E. coli</i> being infected by an M13 phage and releasing the first new phage</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(g_{e} \)</td>
 
                            <td><pre>e_growth_rate</pre></td>
 
                            <td>[cfu/min]</td>
 
                            <td>Growth rate of <i>E. coli</i>, depending on the type of growth (either logistic or exponential), the current concentration \(c_{e}\), the maximum concentration \(c_{c}\), and the division time \(t_{e}\)</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( k\)</td>
 
                            <td><pre>k</pre></td>
 
                            <td>\(3 \cdot 10^{-11}\frac{1}{cfu \cdot pfu \cdot ml \cdot min}\)</td>
 
                            <td>Affinity of M13 phage for <i>E. coli</i></td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( \mu_{max}\)</td>
 
                            <td><pre>mumax</pre></td>
 
                            <td>\(16.67 \frac{cfu}{min \cdot ml \cdot cfu}\)</td>
 
                            <td>Wildtype M13 phage production rate</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\( f\)</td>
 
                            <td><pre>f</pre></td>
 
                            <td>?</td>
 
                            <td>Fitnessvalue, fraction of actual \(\mu\) and \(\mu_{max}\)</td>
 
                        </tr>     
 
                    </tbody>
 
                </table>
 
            }}|
 
            List of all paramters and variables used in this model. When possible values are given.
 
        }}
 
        {{#tag:html|
 
            Each term describing the change of an <i>E. coli</i> concentration contains its growth, \(g_{e}\). The growth rate of an <i>E. coli</i> population can be modelled by exponential growth or by logistic growth. Especially, when long durations per lagoon are modelled, the logistic growth model is more exact. [source].
 
            In the exponential case the growth rate \(g_{e}\) is modelled as
 
            $$
 
            g_{e} (t_{e}) = c_{e} \cdot \frac{log(2)}{t_{e} }
 
            $$
 
            Note that the growth rate in the model increases over time, while in the modelled culture, the nutrient concentration decreases.   
 
           
 
            That makes the logistic model more plausible, it models \(g_{e}\) as
 
            $$
 
            g_{e} (t_{e}, \: c_{e}(t), \: c_{c}) = \frac{c_{c} - c_{e} (t)}{c_{c} } \cdot \frac{log(2)}{t_{e} }
 
            $$
 
            In this case the learning rate decreases as the current concentration \(c_{e}\) approaches the maximum capacity for <i>E. coli</i> in the given setup \(c_{c}\). With this model \(c_{e} \leq c_{c}\) is true for any point in time.
 
           
 
 
 
            <strong>Change of concentration of uninfected <i>E. coli</i>, \(\frac{\partial c_{u} }{\partial t} \: [cfu/min]\)</strong>
 
            $$
 
            \frac{\partial c_{u} }{\partial t}(t) = g_{u} (t_{u}, \: c_{u}(t), \: c_{c})
 
            - k \cdot c_{u}(t) \cdot c_{p}(t)
 
            $$
 
            In addition to the growth term, the concentration of uninfected <i>E. coli</i> is described by a term for infection that takes into account the concentration of uninfected <i>E. coli</i> and the concentration of free phage and reduces the conentration of uninfected <i>E. coli</i>.
 
           
 
            <strong>Change of concentration of uninfected <i>E. coli</i>, \(\frac{\partial c_{i} }{\partial t} \: [cfu/min]\)</strong>
 
            $$
 
            \frac{\partial c_{i} }{\partial t}(t) = \begin{cases}
 
            g_{i} (t_{i},  \: c_{i}(t),  \:c_{c})
 
            + k \cdot c_{i}(t) \cdot c_{p}(t)
 
            - c_{i}(t - t_{P}),
 
            \quad \text{for} \: t > t_{P} \\
 
            g_{i} (t_{i}, \: c_{i}(t), \: c_{c})
 
            + k \cdot c_{i}(t) \cdot c_{p}(t),
 
            \quad \text{otherwise}
 
            \end{cases}
 
            $$
 
            Until \(t > t_{P}\) the concentration of infected <i>E. coli</i> increases by growth and infection of previouly uninfected <i>E. coli</i>. When \(t > t_{P}\), a third term describing that infected <i>E. coli</i> turn into phage-producing <i>E. coli</i> is subtracted.
 
           
 
            <strong>Change of concentration of phage producing <i>E. coli</i>, \(\frac{\partial c_{p} }{\partial t} \: [cfu/min]\)</strong>
 
           
 
            $$
 
            \frac{\partial c_{p} }{\partial t}(t) = \begin{cases}
 
            g_{p} (t_{p}, \: c_{p}(t), \: c_{c}) -
 
            c_{i}(t - t_{P}),
 
            \quad \text{for} \: t > t_{P} \\
 
            g_{p} (t_{p}, \: c_{p}(t), \: c_{c}),
 
            \quad \text{otherwise}
 
            \end{cases}
 
            $$
 
            The population of phage producing E. coli only increases by growth until \(t > t_{P}\). When infected <i>E. coli</i> drop their first phage they turn into producing <i>E. coli</i> as described by the second term. 
 
           
 
            <strong>Change of concentration of <i>M13</i> phage, \(\frac{\partial c_{P} }{\partial t} \: [cpu/min]\)</strong>
 
           
 
            $$
 
            \frac{\partial c_{P} }{\partial t}(t) = c_{P}(t) \cdot \mu_{max} \cdot f - k \cdot c_{u}(t)\cdot c_{P}(t)
 
            $$
 
            The phage concentration is only increased by phage that leave phage-producing <i>E. coli</i>, which happens at a rate of \(f \cdot \mu_{max}\) per time unit, with f being the fitness, a value between 0 and 1, equal to the share of the wildtype <i>M13</i> phages fitness and \(\mu_{max}\) being the wildtype phages production rate. We assume that the only negative influence on the free phage titer is phage infecting <i>E. coli</i>, which depends on both the phage titer \(c_{P}\) and the titer of uninfected <i>E. coli</i>, \(c_{i}\).
 
           
 
            The fitness \(f\) is assumed to be constant during the time spent in one lagoon, it is assumed that all phages have the same fitness.
 
           
 
        }}
 
        {{#tag:html|
 
            <h2>Modelling concentrations over multiple Lagoons</h2>
 
            When transfer from one volume to the next is performed, new lagoon can be modelled with starting values calculated from the last lagoons end values.
 
            For each concentration from the previous lagoon \(c_{t}\), the concentration in the next lagoon \(c_{t+1}\) is calculated as
 
            $$
 
            c_{t+1} = \frac{v_{t} }{v_{l} } \cdot c_{t}
 
            $$
 
            with \(v_{l}\), the volume of a lagoon and \(v_{t}\), the volume that is transferred.
 
            If the transfered volume is spinned down before it is added to the new lagoon, the initial value for \(c_{P}\) is calculated this way. The initial concentration of uninfected <i>E. coli</i> is set to the initial cell density. Initial concentrations of infected and phage-producing <i>E. coli</i> are set to zero, because before the transfer, no phages are present in the new lagoon.
 
            If the transfer volume is not spinned down, the concentration of infected and phage-producing <i>E. coli</i> are calculated, using the above formula. The initial concentration of uninfected <i>E. coli</i> is the calculated the same way, but the initial cell density is added.
 
           
 
            In directed evolution the fitness should increase over time. A linear increase in fitness between to given values was implemented to show this. The problem with this approach is its basic assumption being that all phage-producing <i>E. coli</i> are infected by phages with the same fitness.
 
            To make the model more plausible, a distribution of fitness was introduced. For a set of discrete fitness values each fitness values share of the phage-producing <i>E. coli</i> population is calculated.
 
            That changes the equation for the change in the concentration of phage-producing <i>E. coli</i> to
 
            $$
 
            \frac{\partial c_{P} (t)}{\partial t} = -k \cdot c_{u}(t) \cdot c_{P} (t)
 
            + \sum_{i = 0}^N f_{i} \cdot s_{i} \cdot \mu \cdot c_{p} (t)
 
            $$
 
            The calculation is for \(N\) different fitness values \(f_{i}\) and their share of the total phage-producing <i>E. coli</i> population \(s_{i}\).
 
           
 
        }}
 
        {{#tag:html|
 
            <h2>Numeric solutions</h2>
 
 
            The problem described above is a system of four differential equations, of which two ( \(\frac{\partial c_{i} }{\partial t} \:, \: \frac{\partial c_{p} }{\partial t}\) ) are so called delayed differential equations. They contain a term that needs to be evaluated at a timepoint in the past \(t - t_{P}\). A custom script was used to solve the problem numerically, using the explicit Euler method.[Source!]
 
            The basic idea is that from a point in time with all values and all derivatives values given, the next point in time can be calculated by assuming a linear progress between the two points.
 
            $$
 
            f(t_{n+1}) = f(t_{n}) + (t_{n+1} - t_{n}) \cdot f'(t_{n})
 
            $$
 
            This is performed for \(c_{u}(t)\), \(c_{i}(t)\), \(c_{p}(t)\) and \(c_{P}(t)\) rotatory, to always have the needed values from \(t_{n}\) ready for \(t_{n+1}\).
 
           
 
            To explore, how unprecise parameters and noise influence the outcome of the model, a mode was implemented, that adds gaussian noise to all parameters. It uses the function \(n\) that makes a value \(v\) noisy with a random parameter \(r\).
 
            $$
 
                n(v) = \big(1 - 2r\big) \cdot \sigma_{G} \cdot \sigma_{v} \cdot v, \quad r \in (0, 1)
 
            $$
 
            Here, \(\sigma_{G}\) is a factor that is the same for all \(v\), \(\sigma_{v}\) is specific for \(v\). This way, it is possible to have one parameter being noisier than another, while being able to tune the noise globally.
 
            [Results]
 
        }}
 
        {{Heidelberg/templateus/Tablebox|
 
            Table 2: Additional Variables and Parameters used in the numeric solution of the model |
 
            {{#tag:html|
 
                <table class="table table-bordered mdl-shadow--4dp" XSSCleaned="overflow-x: scroll !important">
 
                    <thead>
 
                        <tr>
 
                            <th>Symbol</th>
 
                            <th>Name in Source code</th>
 
                            <th>Value and Unit</th>
 
                            <th>Explanation</th>
 
 
                        </tr>
 
                    </thead>
 
                    <tbody>
 
                        <tr>
 
                            <td>\(v_{l}\)</td>
 
                            <td><pre>vl</pre></td>
 
                            <td>[ml]</td>
 
                            <td>Volume of lagoon</td>
 
                        </tr>   
 
                        <tr>
 
                            <td>\(t_{l} \)</td>
 
                            <td><pre>tl</pre></td>
 
                            <td>[min]</td>
 
                            <td>Duration until transfer to the next lagoon</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(c_{u}(t_{0})\)</td>
 
                            <td><pre>ceu0</pre></td>
 
                            <td>[cfu]</td>
 
                            <td>Concentration of <i>E. coli</i> in a lagoon when M13 phages are transfered to it</td>
 
                        </tr> 
 
                        <tr>
 
                            <td>\(c_{P}(t_{0})\)</td>
 
                            <td><pre>cp0</pre></td>
 
                            <td>[pfu]</td>
 
                            <td>Initial concentration of M13 phage in the first lagoon</td>
 
                        </tr>
 
                        <tr>
 
                            <td>\(n\)</td>
 
                            <td><pre>epochs</pre></td>
 
                            <td>-</td>
 
                            <td>Number of epochs that are modelled, one epoch being everything that happens in one particular lagoon</td>
 
                        </tr> 
 
                        <tr>
 
                            <td>\(s\)</td>
 
                            <td><pre>tsteps</pre></td>
 
                            <td>-</td>
 
                            <td>Number of time steps for which numeric solutions are calculated, counted per epoch</td>
 
                        </tr> 
 
                        <tr>
 
                            <td>\(c_{P}^{min}\)</td>
 
                            <td><pre>min_cp</pre></td>
 
                            <td>[pfu]</td>
 
                            <td>Lower threshold for valid phage titers</td>
 
                        </tr> 
 
                        <tr>
 
                            <td>\(c_{P}^{max}\)</td>
 
                            <td><pre>max_cp</pre></td>
 
                            <td>[pfu]</td>
 
                            <td>Upper threshold for valid phage titers</td>
 
                        </tr> 
 
                    </tbody>
 
                </table>
 
            }}|
 
            List of all additional paramters and variables used in the numeric solution of this model. When possible values are given.
 
        }}
 
        {{Heidelberg/templateus/Imagebox|
 
            https://static.igem.org/mediawiki/2015/thumb/4/49/Heidelberg_CLT_Fig.7_Splinted_Ligation.png/800px-Heidelberg_CLT_Fig.7_Splinted_Ligation.png|
 
            Fig: 1a Numeric solution calculated with explicit Euler approach|
 
            {{#tag:html|
 
                Logarithmic plot of the concentrations of all <i>E. coli</i> populations cE, uninfected <i>E. coli</i> ceu, infected <i>E. coli</i> cei, phage-producing <i>E. coli</i> cep and M13 phage cP
 
            }}|
 
            pos = left
 
        }}
 
        {{Heidelberg/templateus/Imagebox|
 
            https://static.igem.org/mediawiki/2015/thumb/4/49/Heidelberg_CLT_Fig.7_Splinted_Ligation.png/800px-Heidelberg_CLT_Fig.7_Splinted_Ligation.png|
 
            Fig: 1b Numeric solution calculated with explicit Euler approach|
 
            {{#tag:html|
 
                Non-logarithmic plot of the derivatives of concentrations of all <i>E. coli</i> populations cE, uninfected <i>E. coli</i> ceu, infected <i>E. coli</i> cei, phage-producing <i>E. coli</i> cep and M13 phage cP
 
            }}|
 
            pos = left
 
        }}
 
        {{Heidelberg/templateus/Imagebox|
 
            https://static.igem.org/mediawiki/2015/thumb/4/49/Heidelberg_CLT_Fig.7_Splinted_Ligation.png/800px-Heidelberg_CLT_Fig.7_Splinted_Ligation.png|
 
            Fig: 1c First derivative of concentrations calculated with explicit Euler approach|
 
            {{#tag:html|
 
                Logarithmic plot of the concentrations of all <i>E. coli</i> populations cE, uninfected <i>E. coli</i> ceu, infected <i>E. coli</i> cei, phage-producing <i>E. coli</i> cep and M13 phage cP
 
            }}|
 
            pos = left
 
        }}
 
        {{Heidelberg/templateus/Imagesection|
 
            https://static.igem.org/mediawiki/2017/a/ae/T--Heidelberg--2017_Background_Tiger.jpg|
 
            Fig: 2 Numeric solution for a range of values for \(t_{l}\) and for \(v_{t}\)|
 
            {{#tag:html|
 
                All combinations of setups for the two ranges were calculated. The number of epochs plotted is counted until either the phage titer is less than a minimal threshold (orange) or larger than a maximum threshold (blue)
 
            }}
 
        }}
 
    }}
 
}}
 
{{Heidelberg/references2
 
    }}
 
{{Heidelberg/footer
 
    }}
 

Latest revision as of 17:49, 14 December 2017