Difference between revisions of "Team:Toronto/Description"

(Prototype team page)
 
 
(56 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Toronto}}
 
 
<html>
 
<html>
 +
<!-- ####################################################### -->
 +
<!-- #  This html was produced by the igemwiki generator  # -->
 +
<!-- #  https://github.com/igemuoftATG/generator-igemwiki  # -->
 +
<!-- ####################################################### -->
  
 +
<!-- repo for this wiki: https://github.com/igemuoftATG/wiki17 -->
  
 +
</html>
 +
{{Toronto/head}}
 +
<html>
 +
</html>
 +
{{Toronto/navbar-dark-cyan}}
 +
<html>
  
<div class="column full_size">
+
<!-- Header div -->
<h1>Description</h1>
+
<div class="section">
 
+
<div class="container header" id="dark-cyan">
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
+
<h1>Description</h1>
 
+
</div>
 
+
<h5>What should this page contain?</h5>
+
<ul>
+
<li> A clear and concise description of your project.</li>
+
<li>A detailed explanation of why your team chose to work on this particular project.</li>
+
<li>References and sources to document your research.</li>
+
<li>Use illustrations and other visual resources to explain your project.</li>
+
</ul>
+
 
+
 
+
 
</div>
 
</div>
  
<div class="column full_size" >
+
<!-- Content div -->
 +
<div class="section bg-white">
 +
<div class="container description-page row">
 +
<div class="block content">
  
<h5>Advice on writing your Project Description</h5>
+
<div class="subsection">
 +
<!-- grid 1 -->
 +
<div class="relative-div">
 +
<img src="https://static.igem.org/mediawiki/2017/4/4e/T--Toronto--2017_description1.svg" alt="">
 +
<span id="span1">
 +
<h3 class="text-yellow">Light-activated gene expression</h3>
 +
<p>Light is an attractive mode of gene regulation that provides high spatio-temporal resolution with relatively low levels of toxicity. In order to add to the genetic toolbox, we characterized a novel light-activated gene regulation system that combines the DNA-binding region of LacI with the light inducible LOV (Light Oxygen Voltage) domain. The characterization assay was performed by measuring the fluorescence output of a LacILOV-regulated reporter under blue light illumination. We then computationally modelled the structure of our protein and identified key mutations to optimize its activity.</p>
 +
</span>
 +
</div>
 +
<!-- grid 2 -->
 +
<div>
 +
<img src="https://static.igem.org/mediawiki/2017/f/f2/T--Toronto--2017_description2.svg" alt="">
 +
</div>
 +
<!-- grid 3 -->
 +
<div class="relative-div">
 +
<img src="https://static.igem.org/mediawiki/2017/6/6e/T--Toronto--2017_description3.svg" alt="">
 +
<span id="span2">
 +
<h3 class="text-cyan">Identifying and informing stakeholders</h3>
 +
<p>In order to inform future applications of our tool, we identified key stakeholders that would be impacted by potential uses of LacILOV including experts, businesses, the public and future scientists. To this end, we developed resources to promote interest and meaningful interdisciplinary dialogue between researchers and the public. This was achieved through a podcast series exploring the interaction of synthetic biology with different disciplines, a synthetic biology workshop for burgeoning scientists and an iconathon to promote collaborations between scientists and artists.</p>
 +
</span>
 +
</div>
 +
<!-- grid 4 -->
 +
<div>
 +
<img src="https://static.igem.org/mediawiki/2017/d/dc/T--Toronto--2017_description4.svg" alt="">
 +
</div>
 +
<!-- grid 5 -->
 +
<div class="relative-div">
 +
<img src="https://static.igem.org/mediawiki/2017/5/5d/T--Toronto--2017_description5.svg" alt="">
 +
<span id="span3">
 +
<h3 class="text-red">Applying LacILOV to human gene editing</h3>
 +
<p>However, in order to demonstrate the utility of our tool, we decided to focus on human gene editing, an area that would benefit from stringent gene regulation. We designed and modelled a light activated switch to control CRISPR-Cas9 activity by putting guide RNAs and anti-CRISPR proteins under LacILOV-regulated promoters. We then investigated the ethical and technical concerns of our stakeholders through an interview series involving scientists, engineers, physicians, advocacy groups and religious leaders. Based on technical feedback, we identified an accurate light delivery system as a key technical barrier to validating our tool in mammalian cultures, the next step in its translation to the clinic. We therefore designed and prototyped hardware to pave the way for our system to be used in stem cell cultures. Secondly, based on the different opinions on the ethical applications of human gene editing, we identified the need for clear ethical guidelines. Using the recommendations of the 2017 report by the National Academy of Science, we developed an ethical guide for future iGEM teams.
 +
</p>
 +
</span>
 +
</div>
  
<p>
+
</div>
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.
+
</p>
+
  
<p>
+
</div>
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
+
</p>
+
  
 +
</div>
 
</div>
 
</div>
 
 
<div class="column half_size" >
 
 
<h5>References</h5>
 
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
 
 
</div>
 
 
 
<div class="column half_size" >
 
<h5>Inspiration</h5>
 
<p>See how other teams have described and presented their projects: </p>
 
 
<ul>
 
<li><a href="https://2016.igem.org/Team:Imperial_College/Description">2016 Imperial College</a></li>
 
<li><a href="https://2016.igem.org/Team:Wageningen_UR/Description">2016 Wageningen UR</a></li>
 
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> 2014 UC Davis</a></li>
 
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">2014 SYSU Software</a></li>
 
</ul>
 
</div>
 
 
  
  
 
</html>
 
</html>
 +
{{Toronto/footer}}

Latest revision as of 20:44, 14 December 2017

Description

Light-activated gene expression

Light is an attractive mode of gene regulation that provides high spatio-temporal resolution with relatively low levels of toxicity. In order to add to the genetic toolbox, we characterized a novel light-activated gene regulation system that combines the DNA-binding region of LacI with the light inducible LOV (Light Oxygen Voltage) domain. The characterization assay was performed by measuring the fluorescence output of a LacILOV-regulated reporter under blue light illumination. We then computationally modelled the structure of our protein and identified key mutations to optimize its activity.

Identifying and informing stakeholders

In order to inform future applications of our tool, we identified key stakeholders that would be impacted by potential uses of LacILOV including experts, businesses, the public and future scientists. To this end, we developed resources to promote interest and meaningful interdisciplinary dialogue between researchers and the public. This was achieved through a podcast series exploring the interaction of synthetic biology with different disciplines, a synthetic biology workshop for burgeoning scientists and an iconathon to promote collaborations between scientists and artists.

Applying LacILOV to human gene editing

However, in order to demonstrate the utility of our tool, we decided to focus on human gene editing, an area that would benefit from stringent gene regulation. We designed and modelled a light activated switch to control CRISPR-Cas9 activity by putting guide RNAs and anti-CRISPR proteins under LacILOV-regulated promoters. We then investigated the ethical and technical concerns of our stakeholders through an interview series involving scientists, engineers, physicians, advocacy groups and religious leaders. Based on technical feedback, we identified an accurate light delivery system as a key technical barrier to validating our tool in mammalian cultures, the next step in its translation to the clinic. We therefore designed and prototyped hardware to pave the way for our system to be used in stem cell cultures. Secondly, based on the different opinions on the ethical applications of human gene editing, we identified the need for clear ethical guidelines. Using the recommendations of the 2017 report by the National Academy of Science, we developed an ethical guide for future iGEM teams.