(11 intermediate revisions by the same user not shown) | |||
Line 28: | Line 28: | ||
<!-- subsection 1 --> | <!-- subsection 1 --> | ||
<div id="subsection-Introduction" class="subsection"> | <div id="subsection-Introduction" class="subsection"> | ||
− | <h2 class="text-yellow"> | + | <h2 class="text-yellow">MathWorks Simulations</h2> |
− | <p>Using the previously derived expressions from our ODEs, we | + | <h3>Equations 1, 2, 3</h3> |
+ | \begin{eqnarray} | ||
+ | \frac{dx_2}{d\tau} = \psi_1 - \gamma_2 x_2 \tag{Fig. 1.A}\\ | ||
+ | \frac{d\theta}{d\tau} = k\psi_1 - \gamma_\theta \theta \tag{Fig. 1.B}\\ | ||
+ | \frac{d\lambda}{d\tau} = \frac{\alpha_\lambda}{1+x_2^n} - \gamma_\lambda \lambda \tag{Fig. 1.C} | ||
+ | \end{eqnarray} | ||
+ | |||
+ | <p>Using the previously derived expressions from our ODEs, restated above, we simulated our equations for cI Protein, sgRNA and anti-CRISPR, shown in Figure 1. </p> | ||
+ | |||
<figure> | <figure> | ||
<div class="figures"> | <div class="figures"> | ||
− | <div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7b/T--Toronto--2017_CI.png" alt="data" width=" | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7b/T--Toronto--2017_CI.png" alt="data" width="300px"></div> |
− | <div class="image"><img src="https://static.igem.org/mediawiki/2017/c/c3/T--Toronto--2017_sgRNA.png" alt="data" width=" | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/c/c3/T--Toronto--2017_sgRNA.png" alt="data" width="300px"></div> |
− | <div class="image"><img src="https://static.igem.org/mediawiki/2017/5/54/T--Toronto--2017_anti_crispr.png" alt="data" width=" | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/5/54/T--Toronto--2017_anti_crispr.png" alt="data" width="300px"></div> |
− | <div class="image"><img src="https://static.igem.org/mediawiki/2017/2/23/T--Toronto--2017_ci_anti.png" alt="data" width=" | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/2/23/T--Toronto--2017_ci_anti.png" alt="data" width="300px"></div> |
− | <figcaption>Figure 1: | + | <figcaption>Figure 1:<br> |
− | + | A) <b>cI Protein Simulation</b> Lower cI protein concentrations in the dark (LacILOV is bound)<br> | |
− | + | B) <b>sgRNA Simulation</b> Lower sgRNA protein concentrations in the dark (LacILOV is bound)<br> | |
− | + | C) <b>anti-CRISPR Simulation</b> Anti-CRISPR expression inversely proportional to LacILOV activation<br> | |
− | + | D) <b>anti-CRISPR vs cI Protein</b> Anti-CRISPR protein concentration increases in lower cI concentration</figcaption> | |
</div> | </div> | ||
</figure> | </figure> | ||
+ | |||
+ | <p> We then used the Mathworks Simulink package to derive solutions to our system and model our system for a range of parameters.</p> | ||
+ | <figure> | ||
+ | <div class="figures"> | ||
+ | <div class="image"><img src="https://static.igem.org/mediawiki/2017/8/8a/T--Toronto--2017_x2_light_on.svg" alt="data" width="200px"></div> | ||
+ | <div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7a/T--Toronto--2017_x2_light_off.svg" alt="data" width="200px"></div> | ||
+ | <div class="image"><img src="https://static.igem.org/mediawiki/2017/f/ff/T--Toronto--2017_theta_light_on.svg" alt="data" width="200px"></div> | ||
+ | <div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7a/T--Toronto--2017_theta_light_off.svg" alt="data" width="200px"></div> | ||
+ | <div class="image"><img src="https://static.igem.org/mediawiki/2017/d/d3/T--Toronto--2017_lambda_light_on.svg" alt="data" width="200px"></div> | ||
+ | <div class="image"><img src="https://static.igem.org/mediawiki/2017/3/39/T--Toronto--2017_lambda_light_off.svg" alt="data" width="200px"></div> | ||
+ | <figcaption>Figure 2:<br> | ||
+ | <i>x<sub>2</sub></i> = cI Protein, | ||
+ | <i>α</i> = maximum transcription rate, | ||
+ | <i>γ</i> = degradation rate, | ||
+ | <i>θ</i> = sgRNA, | ||
+ | <i>λ</i> = anti-CRISPR</figcaption> | ||
+ | </div> | ||
+ | </figure> | ||
+ | |||
+ | <p>In the first two plots, cI Protein is represented by the parameter <i>x<sub>2</sub></i>. When light is on, we see that CI protein is at maximum when degradation rate is at 0 and maximum transcription rate is at the highest. There is no transcription when degradation rate is highest and maximum transcription rate is at the lowest. </p> | ||
+ | <p>In the second row of plots, sgRNA is represented by the parameter <i>θ</i>. When light is on, we get maximum concentration of sgRNA when degradation is at 0 and notably, when CI protein is high, sgRNA is also high as they are both not repressed.</p> | ||
+ | <p>For the last row of plots, anti-CRISPR is represented by the parameter <i>λ</i>. Anti-CRISPR expression is high when CI concentration is low, as CI represses anti-crispr.</p> | ||
</div> | </div> | ||
Line 66: | Line 96: | ||
<div id="subsection-Plots" class="subsection"> | <div id="subsection-Plots" class="subsection"> | ||
<h2 class="text-yellow">R plots</h2> | <h2 class="text-yellow">R plots</h2> | ||
− | <p> | + | <p>Our <a href="https://github.com/igemuoftATG/drylab-matlab">GitHub repository</a> contains all our code for the following R plots and R analysis, as well as for generating the above simulations. </p> |
<figure> | <figure> | ||
<div class="figures"> | <div class="figures"> | ||
<div class="image"><img src="https://static.igem.org/mediawiki/2017/6/66/T--Toronto--2017_mcherr_reg_log.png" alt="data"></div> | <div class="image"><img src="https://static.igem.org/mediawiki/2017/6/66/T--Toronto--2017_mcherr_reg_log.png" alt="data"></div> | ||
</div> | </div> | ||
− | <figcaption>Figure | + | <figcaption>Figure 3.a: Log Linear transformation of RFU/OD600 vs Time, Regression Line (red) fitted to data</figcaption> |
</figure> | </figure> | ||
<figure> | <figure> | ||
Line 77: | Line 107: | ||
<div class="image"><img src="https://static.igem.org/mediawiki/2017/4/42/T--Toronto--2017_mcherry-reg-norm.png" alt="data"></div> | <div class="image"><img src="https://static.igem.org/mediawiki/2017/4/42/T--Toronto--2017_mcherry-reg-norm.png" alt="data"></div> | ||
</div> | </div> | ||
− | <figcaption>Figure | + | <figcaption>Figure 3.b: RFU/OD600 vs Time with Transformed Regression Line (red)</figcaption> |
</figure> | </figure> | ||
</div> | </div> | ||
Line 83: | Line 113: | ||
<div id="subsection-Analysis" class="subsection"> | <div id="subsection-Analysis" class="subsection"> | ||
<h2 class="text-yellow">R Analysis</h2> | <h2 class="text-yellow">R Analysis</h2> | ||
+ | <p>Analyzed in R for this model, and got the following values with adjusted R-squared and p-value: </p> | ||
<blockquote class="code"> | <blockquote class="code"> | ||
− | + | <pre>Coefficients: | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | Coefficients: | + | |
Estimate Std. Error t value Pr(>|t|) | Estimate Std. Error t value Pr(>|t|) | ||
(Intercept) 2.87199 0.21773 13.19 1.47e-15 *** | (Intercept) 2.87199 0.21773 13.19 1.47e-15 *** | ||
Line 104: | Line 127: | ||
</pre> | </pre> | ||
</blockquote> | </blockquote> | ||
− | <p>Intercept represents the equilibrium value of LacILov, our intercept:</p> | + | <p>Intercept represents the equilibrium value of LacILov, and thus our intercept:</p> |
− | + | \begin{eqnarray} | |
− | + | 2.879199 \pm (0.21773)(2.026) \\ | |
− | + | 2.879199 \pm 0.44112098 | |
− | + | \end{eqnarray} | |
− | + | ||
</div> | </div> | ||
</div> | </div> |
Latest revision as of 03:07, 16 December 2017
Analysis
MathWorks Simulations
Equations 1, 2, 3
\begin{eqnarray} \frac{dx_2}{d\tau} = \psi_1 - \gamma_2 x_2 \tag{Fig. 1.A}\\ \frac{d\theta}{d\tau} = k\psi_1 - \gamma_\theta \theta \tag{Fig. 1.B}\\ \frac{d\lambda}{d\tau} = \frac{\alpha_\lambda}{1+x_2^n} - \gamma_\lambda \lambda \tag{Fig. 1.C} \end{eqnarray}Using the previously derived expressions from our ODEs, restated above, we simulated our equations for cI Protein, sgRNA and anti-CRISPR, shown in Figure 1.
We then used the Mathworks Simulink package to derive solutions to our system and model our system for a range of parameters.
In the first two plots, cI Protein is represented by the parameter x2. When light is on, we see that CI protein is at maximum when degradation rate is at 0 and maximum transcription rate is at the highest. There is no transcription when degradation rate is highest and maximum transcription rate is at the lowest.
In the second row of plots, sgRNA is represented by the parameter θ. When light is on, we get maximum concentration of sgRNA when degradation is at 0 and notably, when CI protein is high, sgRNA is also high as they are both not repressed.
For the last row of plots, anti-CRISPR is represented by the parameter λ. Anti-CRISPR expression is high when CI concentration is low, as CI represses anti-crispr.
ODE Solution
Solving:
\begin{eqnarray} \frac{x_2}{dt} = \alpha - \gamma x_2 \\ \frac{x_2}{dt} + \gamma x_2 = \alpha \end{eqnarray}Integrating Factor:
\begin{eqnarray} e^{\int \gamma dt} = e^{\gamma t} \end{eqnarray}Multiplying both sides by our integrating factor:
\begin{eqnarray} (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \alpha e^{\gamma t}\\ \int (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \int \alpha e^{\gamma t} \\ x_2 = \frac{\alpha}{\gamma} + ce^{-\gamma t} \end{eqnarray}R plots
Our GitHub repository contains all our code for the following R plots and R analysis, as well as for generating the above simulations.
R Analysis
Analyzed in R for this model, and got the following values with adjusted R-squared and p-value:
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.87199 0.21773 13.19 1.47e-15 *** c(time, time, time) 0.15267 0.01142 13.37 9.74e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.2935 on 37 degrees of freedom Multiple R-squared: 0.8285, Adjusted R-squared: 0.8238 F-statistic: 178.7 on 1 and 37 DF, p-value: 9.741e-16
Intercept represents the equilibrium value of LacILov, and thus our intercept:
\begin{eqnarray} 2.879199 \pm (0.21773)(2.026) \\ 2.879199 \pm 0.44112098 \end{eqnarray}