Difference between revisions of "Team:Greece/Description scripts"

 
(28 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
function importScientific(){
 
function importScientific(){
  
 +
/* Sub section 1 and General (titles and src) */
 
   $.ajax({
 
   $.ajax({
     "url": 'https://static.igem.org/mediawiki/2017/2/25/Back.txt',
+
     "url": 'https://static.igem.org/mediawiki/2017/0/0c/Greekom_subsection1.txt',
 
     "type": "GET",
 
     "type": "GET",
 
     "dataType": "text",
 
     "dataType": "text",
Line 8: Line 9:
 
     "data": {}
 
     "data": {}
 
}).done(function(data, textStatus, jqxhr) {
 
}).done(function(data, textStatus, jqxhr) {
     $('#results').html(data);
+
 
 +
/* General - Execute once */
 +
     $('#label').html('At a glance');
 
     $('#mode').val('simple');
 
     $('#mode').val('simple');
 +
    $('#label').css('right', '199px');
 +
 +
/* Header */
 +
    $('#header').html('Project Description');
 +
    $('#sub_header_1').html('BIO-LOGICAL INFORMATION PROCESSING');
 +
    $('#sub_header_2').html('');
 +
    $('#sub_header_3').html('APPLICATIONS OF BIOLOGICAL COMPUTERS');
 +
    $('#sub_header_4').html('pANDORRA: A BIOLOGICAL COMPUTER TO TREAT CANCER');
 +
    $('#sub_header_5').html('WHY COLORECTAL CANCER?');
 +
    $('#sub_header_6').html('TRANSFERENCE TO CANCER CELLS');
 +
 +
/* Images */
 +
$('#image_1').attr({'src' : 'https://static.igem.org/mediawiki/2017/3/36/Greekom_image1.png'});
 +
$('#image_2').attr({'src' : 'https://static.igem.org/mediawiki/2017/b/b1/Greekom_image2_glance.png'});
 +
$('#image_3').attr({'src' : 'https://static.igem.org/mediawiki/2017/0/09/Greekom_image3_glance.gif'});
 +
 +
/* Section 1 */
 +
    $('#sub_section_1').html(data);
 +
 
     console.log('This is from console alone' + data);
 
     console.log('This is from console alone' + data);
 
}).fail(function(jqxhr, textStatus, errorThrown) {
 
}).fail(function(jqxhr, textStatus, errorThrown) {
 
     //Write code to be executed when the request FAILS.
 
     //Write code to be executed when the request FAILS.
 
});
 
});
$('#results').addClass('grayscale');
+
 
 +
/* Sub section 2 */
 +
  $.ajax({
 +
    "url": 'https://static.igem.org/mediawiki/2017/1/1a/Greekom_text2.txt',
 +
    "type": "GET",
 +
    "dataType": "text",
 +
    "timeout": 10000,
 +
    "data": {}
 +
}).done(function(data, textStatus, jqxhr) {
 +
 
 +
/* Section */
 +
    $('#sub_section_2').html(data);
 +
 
 +
}).fail(function(jqxhr, textStatus, errorThrown) {
 +
    //Write code to be executed when the request FAILS.
 +
});
 +
 
 +
/* Sub section 3 */
 +
  $.ajax({
 +
    "url": 'https://static.igem.org/mediawiki/2017/3/34/Greekom_subsection3_glance.txt',
 +
    "type": "GET",
 +
    "dataType": "text",
 +
    "timeout": 10000,
 +
    "data": {}
 +
}).done(function(data, textStatus, jqxhr) {
 +
 
 +
/* Section */
 +
    $('#sub_section_3').html(data);
 +
 
 +
}).fail(function(jqxhr, textStatus, errorThrown) {
 +
    //Write code to be executed when the request FAILS.
 +
});
 +
 
 +
/* Sub section 4 */
 +
  $.ajax({
 +
    "url": 'https://static.igem.org/mediawiki/2017/2/2e/Greekom_text4.txt',
 +
    "type": "GET",
 +
    "dataType": "text",
 +
    "timeout": 10000,
 +
    "data": {}
 +
}).done(function(data, textStatus, jqxhr) {
 +
 
 +
/* Section */
 +
    $('#sub_section_4').html(data);
 +
 
 +
}).fail(function(jqxhr, textStatus, errorThrown) {
 +
    //Write code to be executed when the request FAILS.
 +
});
 +
 
 +
/* Sub section 5 */
 +
  $.ajax({
 +
    "url": 'https://static.igem.org/mediawiki/2017/0/06/Greekom_subsection5_glance.txt',
 +
    "type": "GET",
 +
    "dataType": "text",
 +
    "timeout": 10000,
 +
    "data": {}
 +
}).done(function(data, textStatus, jqxhr) {
 +
 
 +
/* Section */
 +
    $('#sub_section_5').html(data);
 +
 
 +
}).fail(function(jqxhr, textStatus, errorThrown) {
 +
    //Write code to be executed when the request FAILS.
 +
});
 +
 
 +
/* Sub section 6 */
 +
  $.ajax({
 +
    "url": 'https://static.igem.org/mediawiki/2017/a/a7/Greekom_text6.txt',
 +
    "type": "GET",
 +
    "dataType": "text",
 +
    "timeout": 10000,
 +
    "data": {}
 +
}).done(function(data, textStatus, jqxhr) {
 +
 
 +
/* Section */
 +
    $('#sub_section_6').html(data);
 +
 
 +
}).fail(function(jqxhr, textStatus, errorThrown) {
 +
    //Write code to be executed when the request FAILS.
 +
});
 +
 
 +
/* Sub section 7 */
 +
  $.ajax({
 +
    "url": 'https://static.igem.org/mediawiki/2017/0/07/Greekom_subsection7_glance.txt',
 +
    "type": "GET",
 +
    "dataType": "text",
 +
    "timeout": 10000,
 +
    "data": {}
 +
}).done(function(data, textStatus, jqxhr) {
 +
 
 +
/* Section */
 +
    $('#sub_section_7').html(data);
 +
 
 +
}).fail(function(jqxhr, textStatus, errorThrown) {
 +
    //Write code to be executed when the request FAILS.
 +
});
 +
 
 +
$('#Description').removeClass('grayscale');
 +
 
 
}
 
}
  
 
function importGeneral(){
 
function importGeneral(){
 
 
   $.ajax({
 
   $.ajax({
     "url": 'https://static.igem.org/mediawiki/2017/2/24/GreeKom_front.txt', //'https://static.igem.org/mediawiki/2017/2/23/Front.txt',
+
     "url": 'https://static.igem.org/mediawiki/2017/1/12/Greekom_text1.txt',
 
     "type": "GET",
 
     "type": "GET",
 
     "dataType": "text",
 
     "dataType": "text",
Line 26: Line 145:
 
     "data": {}
 
     "data": {}
 
}).done(function(data, textStatus, jqxhr) {
 
}).done(function(data, textStatus, jqxhr) {
    $('#results').html(data);
+
 
 +
/* General - Execute once */
 
     $('#mode').val('scientific');
 
     $('#mode').val('scientific');
 +
    $('#label').html('In depth');
 +
    $('#label').css('right', '210px');
 
     console.log('This is from console alone' + data);
 
     console.log('This is from console alone' + data);
 +
 +
 +
/* Header */
 +
    $('#header').html('Project Description');
 +
    $('#sub_header_1').html('BIOMOLECULAR COMPUTING');
 +
    $('#sub_header_2').html('APPLICATIONS OF BIOMOLECULAR COMPUTERS');
 +
    $('#sub_header_3').html('pANDORRA: PROGRAMMABLE AND OR RNAi ASSEMBLY');
 +
    $('#sub_header_4').html('COLORECTAL CANCER');
 +
    $('#sub_header_5').html('A HOLISTIC CANCER THERAPY');
 +
    $('#sub_header_6').html('');
 +
 +
/* Section 1 */
 +
    $('#sub_section_1').html(data);
 +
    $('#sub_section_2').html("Being assembled exclusively from biomolecules, these circuits possess two highly advantageous characteristics; being compatible with in vivo applications and "+ "exhibiting the remarkable information processing potential of biological systems which opens up opportunities for a variety of applications."+
 +
"<ul><li style='list-style:none'>1.      Creation of intelligent diagnostic systems capable of molecular profiling a disease state and subsequent emission of a detectable signal. [3]</li>"+
 +
"<li style='list-style:none'>2.    Creation of intelligent therapeutic systems capable of selective actuation upon a predetermined molecular profile. [3]</li>"+
 +
"<li style='list-style:none'>3.    Creation of biomolecular high-throughput assays for RNA profiling. [4]</li>"+
 +
"<li style='list-style:none'>4.    Application of highly parallel and energy efficient computing for computationally complex problems. [5]</li>"+
 +
"<li style='list-style:none'>5.    Information storage and retrieval. [6]</li></ul>And many more yet to be imagined...");
 +
 +
    $('#sub_section_3').html("MicroRNAs (miRNAs) constitute ideal building blocks for biochemical logic circuits as they inherently implement a NOR gate upon the gene they regulate. [7] In fact,"+" any logic formula can be computed by miRNAs acting upon multiple transcriptional and post-transcriptional regulators and synthetic miRNAs encoded by them. [2] Therefore, we focused our "+"efforts on developing a toolbox of highly modular and interchangeable parts, sufficient to assemble a plethora of customizable, multi-leveled circuits, enabling easy manipulations of miRNA inputs "+"as well as circuit topologies to accommodate a less arduous application of classifying circuits by prospective iGEM teams and the entire SynBio community. We applied our engineered circuit in our "+"cell line of interest, Caco-2, to actuate selective protein expression upon integration of multiple miRNA inputs, elicited from our model as quintessential to optimize our circuit’s classifying "+"ability, demonstrating the feasibility of approaching colorectal cancer therapeutics with molecular-profiling-based expression systems of proteins of therapeutic potential.");
 +
 +
    $('#sub_section_4').html("Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in the US. [8] CRC's lifetime prevalence equals 4.7% and 4.4% for men and women "+ "respectively, whereas the 5- and 10-year survival rate is 65% and 58% respectively. An array of novel methods and approaches have been described over the last years based  on our increasing "+ "knowledge of the molecular events that contribute to carcinogenesis and tumor proliferation, however the go-to method for CRC's treatment remains surgical excision along with chemotherapy (adjuvant "+"or neoadjuvant) and radiation therapy. [9] The aforementioned therapeutic approaches suffer from one or more of the following: nonspecific targeting of cancer cells, insufficient penetration to "+"the target tissue and inadequate cytotoxicity, all of which are associated with increased mortality and decreased quality of life. [10]");
 +
 +
    console.log('This is from console alone' + data);
 +
 +
    $('#sub_section_5').html("Towards our vision of an RNAi-based logic circuit application to cancer treatment, inspired by the bottom-up philosophy of synthetic biology, we could not help but "+"envision what characteristics the ideal cancer treatment should entail. Our notion essentially described a controllable agent to transfer the classifier plasmids, providing selective targeting, "+"enhanced motility and therefore penetration to tissues of interest as well as responsiveness to external stimuli operating as control signals. Bacteria are surprisingly well suited to perform "+"this transference, due to their inherent propensity to favor colonization of tumorous tissue owing to the advantageous growth conditions that cancer microenvironment exhibits as well as the fact "+"that they naturally possess biological mechanisms which can be exploited by means of synthetic biology to perform the aforementioned functions. [10] We engineered a strain of E. coli capable of "+"selective binding to colorectal cancer cells and expressing invasion machinery under the control of a quorum sensing system so as to achieve cell density-dependent invasion, associated with "+"tumorous microenvironment.");
 +
 +
    $('#sub_section_6').html('');
 +
    $('#sub_section_7').html('');
 
}).fail(function(jqxhr, textStatus, errorThrown) {
 
}).fail(function(jqxhr, textStatus, errorThrown) {
 
     //Write code to be executed when the request FAILS.
 
     //Write code to be executed when the request FAILS.
 
});
 
});
$('#results').removeClass('grayscale');
+
 
 +
 
 +
$('#Description').addClass('grayscale');
 +
$('#display_box').css('height','4650px');
 +
 
 
}
 
}

Latest revision as of 03:57, 16 December 2017

function importScientific(){

/* Sub section 1 and General (titles and src) */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/0/0c/Greekom_subsection1.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* General - Execute once */

   $('#label').html('At a glance');
   $('#mode').val('simple');
   $('#label').css('right', '199px');

/* Header */

   $('#header').html('Project Description');
   $('#sub_header_1').html('BIO-LOGICAL INFORMATION PROCESSING');
   $('#sub_header_2').html();
   $('#sub_header_3').html('APPLICATIONS OF BIOLOGICAL COMPUTERS');
   $('#sub_header_4').html('pANDORRA: A BIOLOGICAL COMPUTER TO TREAT CANCER');
   $('#sub_header_5').html('WHY COLORECTAL CANCER?');
   $('#sub_header_6').html('TRANSFERENCE TO CANCER CELLS');

/* Images */ $('#image_1').attr({'src' : 'https://static.igem.org/mediawiki/2017/3/36/Greekom_image1.png'}); $('#image_2').attr({'src' : 'https://static.igem.org/mediawiki/2017/b/b1/Greekom_image2_glance.png'}); $('#image_3').attr({'src' : 'https://static.igem.org/mediawiki/2017/0/09/Greekom_image3_glance.gif'});

/* Section 1 */

   $('#sub_section_1').html(data);
   console.log('This is from console alone' + data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 2 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/1/1a/Greekom_text2.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_2').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 3 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/3/34/Greekom_subsection3_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_3').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 4 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/2/2e/Greekom_text4.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_4').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 5 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/0/06/Greekom_subsection5_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_5').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 6 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/a/a7/Greekom_text6.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_6').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 7 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/0/07/Greekom_subsection7_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_7').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

$('#Description').removeClass('grayscale');

}

function importGeneral(){

 $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/1/12/Greekom_text1.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* General - Execute once */

   $('#mode').val('scientific');
   $('#label').html('In depth');
   $('#label').css('right', '210px');
   console.log('This is from console alone' + data);


/* Header */

   $('#header').html('Project Description');
   $('#sub_header_1').html('BIOMOLECULAR COMPUTING');
   $('#sub_header_2').html('APPLICATIONS OF BIOMOLECULAR COMPUTERS');
   $('#sub_header_3').html('pANDORRA: PROGRAMMABLE AND OR RNAi ASSEMBLY');
   $('#sub_header_4').html('COLORECTAL CANCER');
   $('#sub_header_5').html('A HOLISTIC CANCER THERAPY');
   $('#sub_header_6').html();

/* Section 1 */

   $('#sub_section_1').html(data);
   $('#sub_section_2').html("Being assembled exclusively from biomolecules, these circuits possess two highly advantageous characteristics; being compatible with in vivo applications and "+ "exhibiting the remarkable information processing potential of biological systems which opens up opportunities for a variety of applications."+
"
  • 1. Creation of intelligent diagnostic systems capable of molecular profiling a disease state and subsequent emission of a detectable signal. [3]
  • "+ "
  • 2. Creation of intelligent therapeutic systems capable of selective actuation upon a predetermined molecular profile. [3]
  • "+ "
  • 3. Creation of biomolecular high-throughput assays for RNA profiling. [4]
  • "+ "
  • 4. Application of highly parallel and energy efficient computing for computationally complex problems. [5]
  • "+ "
  • 5. Information storage and retrieval. [6]
And many more yet to be imagined...");
   $('#sub_section_3').html("MicroRNAs (miRNAs) constitute ideal building blocks for biochemical logic circuits as they inherently implement a NOR gate upon the gene they regulate. [7] In fact,"+" any logic formula can be computed by miRNAs acting upon multiple transcriptional and post-transcriptional regulators and synthetic miRNAs encoded by them. [2] Therefore, we focused our "+"efforts on developing a toolbox of highly modular and interchangeable parts, sufficient to assemble a plethora of customizable, multi-leveled circuits, enabling easy manipulations of miRNA inputs "+"as well as circuit topologies to accommodate a less arduous application of classifying circuits by prospective iGEM teams and the entire SynBio community. We applied our engineered circuit in our "+"cell line of interest, Caco-2, to actuate selective protein expression upon integration of multiple miRNA inputs, elicited from our model as quintessential to optimize our circuit’s classifying "+"ability, demonstrating the feasibility of approaching colorectal cancer therapeutics with molecular-profiling-based expression systems of proteins of therapeutic potential.");
   $('#sub_section_4').html("Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in the US. [8] CRC's lifetime prevalence equals 4.7% and 4.4% for men and women "+ "respectively, whereas the 5- and 10-year survival rate is 65% and 58% respectively. An array of novel methods and approaches have been described over the last years based  on our increasing "+ "knowledge of the molecular events that contribute to carcinogenesis and tumor proliferation, however the go-to method for CRC's treatment remains surgical excision along with chemotherapy (adjuvant "+"or neoadjuvant) and radiation therapy. [9] The aforementioned therapeutic approaches suffer from one or more of the following: nonspecific targeting of cancer cells, insufficient penetration to "+"the target tissue and inadequate cytotoxicity, all of which are associated with increased mortality and decreased quality of life. [10]");
   console.log('This is from console alone' + data);
   $('#sub_section_5').html("Towards our vision of an RNAi-based logic circuit application to cancer treatment, inspired by the bottom-up philosophy of synthetic biology, we could not help but "+"envision what characteristics the ideal cancer treatment should entail. Our notion essentially described a controllable agent to transfer the classifier plasmids, providing selective targeting, "+"enhanced motility and therefore penetration to tissues of interest as well as responsiveness to external stimuli operating as control signals. Bacteria are surprisingly well suited to perform "+"this transference, due to their inherent propensity to favor colonization of tumorous tissue owing to the advantageous growth conditions that cancer microenvironment exhibits as well as the fact "+"that they naturally possess biological mechanisms which can be exploited by means of synthetic biology to perform the aforementioned functions. [10] We engineered a strain of E. coli capable of "+"selective binding to colorectal cancer cells and expressing invasion machinery under the control of a quorum sensing system so as to achieve cell density-dependent invasion, associated with "+"tumorous microenvironment.");
   $('#sub_section_6').html();
   $('#sub_section_7').html();

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});


$('#Description').addClass('grayscale'); $('#display_box').css('height','4650px');

}