KyleBodell (Talk | contribs) |
KyleBodell (Talk | contribs) |
||
Line 83: | Line 83: | ||
</p> | </p> | ||
− | <h2> | + | <h2>Anthocyanin Construct</h2> |
<h3>3gt</h3> | <h3>3gt</h3> | ||
<p class="center"> The gene 3gt is from the anthocyanin synthesis pathway and converts the initial molecule Pelargonidin into Anthocyanin. This gene is from the organism <i>Petunia hybrid</i>. We have added this part to the registry as one of our new basic part submissions. Part BBa_idontknowwewillfindout | <p class="center"> The gene 3gt is from the anthocyanin synthesis pathway and converts the initial molecule Pelargonidin into Anthocyanin. This gene is from the organism <i>Petunia hybrid</i>. We have added this part to the registry as one of our new basic part submissions. Part BBa_idontknowwewillfindout | ||
Line 98: | Line 98: | ||
<h3>dfr</h3> | <h3>dfr</h3> | ||
− | <p class="center">The gene dfr is the second one in our anthocyanin synthesis pathway. We are using the biobrick part | + | <p class="center">The gene dfr is the second one in our anthocyanin synthesis pathway. We are using the biobrick part <a href="http://parts.igem.org/Part:BBa_K1497010">BBa_K1497010</a>. It was added to the registry by the 2014 Darmstadt igem team. Their composite part <a href="http://parts.igem.org/Part:BBa_K1497023">BBa_K1497023</a> did not contain an promoters, our construct containing this gene will be preceeded by a T7 promoter. |
</p> | </p> | ||
<h3>ans</h3> | <h3>ans</h3> | ||
− | <p class="center">This gene is the third gene in our pathway, it converts the initial molecule into pelargonidin. It is from the organism <i>Fragaria x ananassa</i>and was added to the registry by the 2014 Darmstadt team. It is an engineered anthocyanidin synthase. Part BBa_K1497002. | + | <p class="center">This gene is the third gene in our pathway, it converts the initial molecule into pelargonidin. It is from the organism <i>Fragaria x ananassa</i>and was added to the registry by the 2014 Darmstadt team. It is an engineered anthocyanidin synthase. Part <a href="http://parts.igem.org/Part:BBa_K1497002">BBa_K1497002</a>. |
</p> | </p> | ||
Revision as of 22:31, 7 September 2017
Parts Used:
(this is what the iGEM website said to include ) ****This page should list all the basic parts your team has made during your project. You must add all characterization information for your parts on the Registry. You should not put characterization information on this page. Remember judges will only look at the first part in the list for the Best Basic Part award, so put your best part first!
Anthocyanin Construct
3gt
The gene 3gt is from the anthocyanin synthesis pathway and converts the initial molecule Pelargonidin into Anthocyanin. This gene is from the organism Petunia hybrid. We have added this part to the registry as one of our new basic part submissions. Part BBa_idontknowwewillfindout
yadH
This Gene is an Escherichia coli gene that has been shown to increase the yields of anthocyanin when paired with the genes in our anthocyanin construct. It is our second original basic part submission to the registry. It is uncharacterized and is a putative inter-membrane transport protein.
f3h
We will be useing the gene f3h as the first gene in our anthocyanin synthesis pathway, it comes from the organism Petroselinum crispum. It was added to the registry by the 2014 Darmstadt iGEM team, part BBa_K1497009. This gene will code for a protein that converts the initial molecule flavanone into dihydroflavonol.
dfr
The gene dfr is the second one in our anthocyanin synthesis pathway. We are using the biobrick part BBa_K1497010. It was added to the registry by the 2014 Darmstadt igem team. Their composite part BBa_K1497023 did not contain an promoters, our construct containing this gene will be preceeded by a T7 promoter.
ans
This gene is the third gene in our pathway, it converts the initial molecule into pelargonidin. It is from the organism Fragaria x ananassaand was added to the registry by the 2014 Darmstadt team. It is an engineered anthocyanidin synthase. Part BBa_K1497002.
Zeaxanthin
crtY
This gene is from the organism Pantoea ananatis and is part or the carotenoid synthesis pathway. It converts the initial molecule Lycopene into the final molecule Beta-Carotene. This gene is our third original basic part submission to the iGEM registry. It is part BBa_something.
crtZ
This gene is from the organism Pantoea ananatis and is our final gene in the carotenoid synthesis pathway. It was added to the registry by Edinburgh 2007 and is the part BBa-I742157.This part converts the Beat-Carotene into our final product, the pigment Zeaxanthin.
Melanin
melA
The gene melA is from the organism Rhizobium etli and was added to the registry by the Cambridge 2009 iGEM team. Part BBa_K274001
T7 Promoter
The Promoter we used for our Melanin Construct is T7 promoter, This allows us to control the production of Melanin. This promoter is from the T7 bacteriophage, it is a Virus that inserts its DNA into Bacteria in order to reproduce and stay alive. This promoter works with the T7 system inside the Escherichia coli strain BL21(DE3), (Fig 1.)
(Fig 1.) This image shows the T7 Promoter system, 1.Lactose inducible promoter 2.E. coli Ribosomal Binding site. 3.The Gene for T7 RNA polymerase. 4.Terminator 5.T7 RNA polymerase. 6.T7 promoter. 7.E. coli Ribosomal Binding site. 8.The gene/genes in our construct. 9.Terminator. 10.mRNA produced by the transcription of the construct.
This shows the process that occurs with the T7 System. We induce the Lactose inducible promoter with IPTG as it mimics the lactose and cannot be broken down by the cell. This allows it to continually perform transcription on the construct embedded in the Genome of the BL21(DE3) and thusly constantly produce the T7 RNA polymerase.