Difference between revisions of "Team:Heidelberg/internal tools"

Line 145: Line 145:
 
}
 
}
  
h1, h2 { margin-top: 10px; font-family: 'Josefin Sans', sans-serif; font-size: 48px; font-weight: 300; color: #393939; line-height: 56px; opacity: 0.9; }
+
h1 {margin-top: 10px; font-family: 'Josefin Sans', sans-serif; font-size: 65px; font-weight: 500; color: #393939; line-height: 56px; opacity: 0.9;}
 +
h2 { margin-top: 10px; font-family: 'Josefin Sans', sans-serif; font-size: 48px; font-weight: 300; color: #393939; line-height: 56px; opacity: 0.9; }
 
h3 { font-family: 'Josefin Sans', sans-serif; font-size: 32px; font-weight: 300; color: #555; line-height: 40px; }
 
h3 { font-family: 'Josefin Sans', sans-serif; font-size: 32px; font-weight: 300; color: #555; line-height: 40px; }
  
Line 3,751: Line 3,752:
 
                   
 
                   
  
<div style="background-color:white;">
+
<div style="padding-top: 40px; background-color:white;">
 
<div class="t-container">
 
<div class="t-container">
 
<div class="t-col t-col_12">
 
<div class="t-col t-col_12">
                                                         <div class="container-fluid" style="margin-top: 10px; padding-bottom: 30px;">
+
                                                         <div class="container-fluid" style="margin-top: 10px;">
 
                                                                 <h1>Internal Tools</h1>
 
                                                                 <h1>Internal Tools</h1>
 
                                                                     <h2>Number of mutations and mutated sequences</h2>
 
                                                                     <h2>Number of mutations and mutated sequences</h2>

Revision as of 13:39, 18 September 2017

WikitemplateA home - 2014.igem.org

 

WikitemplateA home

From 2014.igem.org

Internal Tools

Number of mutations and mutated sequences

Expected number of mutations in a single sequence: $$p_{m} = \frac{N_{mutations}}{L_{Sequence}} = N_{generations} * r_{mutation} = t_{total} * \Phi * r_{mutation}$$

The expected share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is the probability that \(L_{sequence}\) basepairs stay unchanged when \(\frac{N_{mutations}}{L_{Sequence}}\) mutations are expected: $$p_{M} = \frac{N_{mutated}}{N_{Sequences}} = 1 - p(N_{mutations}=0) = 1 - (1-p_{m})^{L_{Sequence}} $$

With this equation we can also calculate the number of sequences \(N_{Sequences}\) that have to be sequenced in order to find a mutated one with a probability of \(p(N_{mutated} > 0)\). $$ N_{Sequences} = \frac{p(N_{mutated} > 0)}{p_{M}} $$

The probability to find at least one mutated sequence under the given conditions is $$p(N_{mutated}>0) = 1 - (1-p_{M})^{N_{sequences}}$$ which gives $$N_{Sequences} = \frac{ln(1-p(N_{mutated}>0))}{ln(1-p_{M})}$$

Set \(\Phi\) to zero to use the number of generations for the calculation. If \(\Phi\) and the number of generations are given, \(\Phi\) is used.

Consider \(L_{Sequence}\) as the number of basepairs that is expected to be mutated. If half of the sequence you are interested in, is highly conserved choose a lower \(L_{Sequence}\).

Get your mutations


\(p_{m} =\) %(bp/bp).

\(N_{mutations} =\) bp per sequence.

The share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is \(p_{M}=\) % of sequences