Difference between revisions of "Team:Heidelberg/internal tools"

(Corrected warnings about mutation rates and probabilties > 1.)
Line 630: Line 630:
 
      
 
      
 
     if(mr>1){
 
     if(mr>1){
         warnings += "A mutation rate that is above one mutation per basepair, per generation does not make sense. ";
+
         warnings += "A mutation rate that is above one mutation per basepair, per generation does not make sense. 100 % should be enough, right? ";
 +
        mr = 1;
 
     }
 
     }
 
      
 
      
 
     if(pm>1){
 
     if(pm>1){
         warnings +="A probability greater than one does not make sense. "
+
         warnings +="A probability of 100 % should be enough, right?. ";
    }
+
         pm = 1;
    if(warnings!=""){
+
        //Display warning and exit
+
        $("#warnings_mutations").html(warnings);
+
        $("#amount_mutations").html('?');
+
        $("#number_mutations").html('?');
+
        $("#amount_mutated").html('?');
+
         $("#number_generations").html("");
+
        $("#number_to_seq").html("");
+
        return false;
+
 
     }
 
     }
 
      
 
      
Line 680: Line 672:
 
     $("#number_generations").html(ng_out);
 
     $("#number_generations").html(ng_out);
 
     $("#number_to_seq").html(number_to_seq_out);
 
     $("#number_to_seq").html(number_to_seq_out);
     $("warnings_mutations").html("");
+
     $("#warnings_mutations").html(warnings);
  
  

Revision as of 15:50, 21 September 2017

WikitemplateA home - 2014.igem.org

 

WikitemplateA home

From 2014.igem.org

Internal Tools

Number of mutations and mutated sequences

Expected number of mutations in a single sequence: $$p_{m} = \frac{N_{mutations}}{L_{Sequence}} = N_{generations} \cdot r_{mutation} = t_{total} \cdot \Phi \cdot r_{mutation}$$

The expected share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is the probability that \(L_{sequence}\) basepairs stay unchanged when \(\frac{N_{mutations}}{L_{Sequence}}\) mutations are expected: $$p_{M} = \frac{N_{mutated}}{N_{Sequences}} = 1 - p(N_{mutations}=0) = 1 - (1-p_{m})^{L_{Sequence}} $$

With this equation we can also calculate the number of sequences \(N_{Sequences}\) that have to be sequenced in order to find a mutated one with a probability of \(p(N_{mutated} > 0)\). $$ N_{Sequences} = \frac{p(N_{mutated} > 0)}{p_{M}} $$

The probability to find at least one mutated sequence under the given conditions is $$p(N_{mutated}>0) = 1 - (1-p_{M})^{N_{sequences}}$$ which gives $$N_{Sequences} = \frac{ln(1-p(N_{mutated}>0))}{ln(1-p_{M})}$$

Set \(\Phi\) to zero to use the number of generations for the calculation. If \(\Phi\) and the number of generations are given, \(\Phi\) is used.

Consider \(L_{Sequence}\) as the number of basepairs that is expected to be mutated. If half of the sequence you are interested in, is highly conserved choose a lower \(L_{Sequence}\).

Get your mutations


\(p_{m} =\) %(bp/bp).

\(N_{mutations} =\) bp per sequence.

The share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is \(p_{M}=\) % of sequences