Line 1: | Line 1: | ||
{{Aix-Marseille|title=Part Collection|toc=__TOC__}} | {{Aix-Marseille|title=Part Collection|toc=__TOC__}} | ||
− | <!-- | + | <!-- both part design and the use --> |
<!-- With any luck you will be able to add a testing paragraph or link --> | <!-- With any luck you will be able to add a testing paragraph or link --> | ||
<!-- If you had lots of spare time you could add a picture etc. --> | <!-- If you had lots of spare time you could add a picture etc. --> | ||
<!-- but as a target for the Judging form it is perfect (you can change it upto the wiki freeze) --> | <!-- but as a target for the Judging form it is perfect (you can change it upto the wiki freeze) --> | ||
− | Our collection of parts is designed to allow the creation of proteins, or phage-like particles, that target a wide range of different Gram-negative bacteria. Each part corresponds to the domains 1 (D1) and 2 (D2) from the p3 protein of filamentous phages targeting the different organisms. The parts in the collection are expected to be used as fusion proteins and so conform to the | + | Our collection of parts is designed to allow the creation of proteins, or phage-like particles, that target a wide range of different Gram-negative bacteria. Each part corresponds to the domains 1 (D1) and 2 (D2) from the p3 protein of filamentous phages targeting the different organisms. The parts in the collection are expected to be used as fusion proteins and so conform to the [http://parts.igem.org/Assembly_standard_25 Rfc25] standard. To know more about the design of these parts, and how we used them to make phage-like particles in our project, you can check out our [[Team:Aix-Marseille/M13_Design|design page]]. |
− | This part collection contains the following biobricks all in | + | This part collection contains the following biobricks all in [http://parts.igem.org/Assembly_standard_25 Rfc25] format: |
*p3_E.coli (RFC25) - [http://parts.igem.org/Part:BBa_K2255008 BBa_K2255008] | *p3_E.coli (RFC25) - [http://parts.igem.org/Part:BBa_K2255008 BBa_K2255008] | ||
Line 21: | Line 21: | ||
*p3_X.fastidiosa (RFC25) - [http://parts.igem.org/Part:BBa_K2255017 BBa_K2255017] | *p3_X.fastidiosa (RFC25) - [http://parts.igem.org/Part:BBa_K2255017 BBa_K2255017] | ||
*p3_X.fuscans (RFC25) - [http://parts.igem.org/Part:BBa_K2255018 BBa_K2255018] | *p3_X.fuscans (RFC25) - [http://parts.igem.org/Part:BBa_K2255018 BBa_K2255018] | ||
+ | |||
+ | ==Design== | ||
+ | |||
+ | ==Design== | ||
+ | |||
+ | The domain 3 (D3) and the signal sequence are both the best conserved part from the attachment protein. Using a global protein alignment (Needleman-Wunsch and [https://static.igem.org/mediawiki/parts/5/52/T--Aix-Marseille--alignement.pdf MUSCLE alignments]), using two or three sequence at one time, we were eventually able to determinate domain 1 (D1) and domain 2 (D2) from the attachment protein of each phages. | ||
+ | |||
+ | We were able to found these domains because each of them is separated by a flexible sequence composed of Glycine and Serine <ref>Heilpern, A. J. & Waldor, M. K. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include ''Vibrio cholerae''. J. Bacteriol. 185, 1037–1044 (2003).</ref>. Then we retrotranslate this sequence in a nucleotidic sequence and we used iDT to optimise this sequence for ''E.coli'' production. | ||
+ | |||
+ | {| | ||
+ | ! scope="col" |Pathogene | ||
+ | ! scope="col" |Filamentous phage | ||
+ | ! scope="col" |GI | ||
+ | ! scope="col" |Part ID | ||
+ | |- | ||
+ | |''Escherichia coli'' | ||
+ | |M13 (fd,ff)<ref name=Smeal>Smeal, S. W., Schmitt, M. A., Pereira, R. R., Prasad, A. & Fisk, J. D. Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500, 259–274 (2017).</ref> | ||
+ | |927334 | ||
+ | |BBa K2255008 | ||
+ | |- | ||
+ | |''Neisseria gonorrheae'' | ||
+ | |NgoΦ6<ref>Piekarowicz, A. et al. Neisseria gonorrhoeae Filamentous Phage NgoΦ6 Is Capable of Infecting a Variety of Gram-Negative Bacteria. J Virol 88, 1002–1010 (2014).</ref> | ||
+ | |1260906 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255009 BBa_K2255009] | ||
+ | |- | ||
+ | |''Pseudomonas aeruginosa'' | ||
+ | |Pf3<ref>Luiten, R. G., Schoenmakers, J. G. & Konings, R. N. The major coat protein gene of the filamentous Pseudomonas aeruginosa phage Pf3: absence of an N-terminal leader signal sequence. Nucleic Acids Res 11, 8073–8085 (1983).</ref> | ||
+ | |215374 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255010 BBa_K2255010] | ||
+ | |- | ||
+ | | rowspan="2" | ''Ralstonia solanacearum'' | ||
+ | |RSM1Φ<ref name="T,K">T, K. et al. Genomic characterization of the filamentous integrative bacteriophages {phi}RSS1 and {phi}RSM1, which infect Ralstonia solanacearum., Genomic Characterization of the Filamentous Integrative Bacteriophages φRSS1 and φRSM1, Which Infect Ralstonia solanacearum. J Bacteriol 189, 189, 5792, 5792–5802 (2007).</ref> | ||
+ | |5179368 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255011 BBa_K2255011] | ||
+ | |- | ||
+ | |RSS1Φ<ref name="T,K">T, K. et al. Genomic characterization of the filamentous integrative bacteriophages {phi}RSS1 and {phi}RSM1, which infect Ralstonia solanacearum., Genomic Characterization of the Filamentous Integrative Bacteriophages φRSS1 and φRSM1, Which Infect Ralstonia solanacearum. J Bacteriol 189, 189, 5792, 5792–5802 (2007).</ref> | ||
+ | |4525385 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255012 BBa_K2255012] | ||
+ | |- | ||
+ | | rowspan="3" | ''Vibrio Cholerea'' | ||
+ | |CTXΦ<ref name="Heilpern">Heilpern, A. J. & Waldor, M. K. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J. Bacteriol. 185, 1037–1044 (2003).</ref> | ||
+ | |26673076 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255013 BBa_K2255013] | ||
+ | |- | ||
+ | |VFJΦ(fs2)<ref>Ikema, M. & Honma, Y. A novel filamentous phage, fs-2, of Vibrio cholerae O139. Microbiology 144, 1901–1906 (1998).</ref> | ||
+ | |1261866 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255014 BBa_K2255014] | ||
+ | |- | ||
+ | |VGJΦ<ref>Campos, J. et al. VGJφ, a Novel Filamentous Phage of Vibrio cholerae, Integrates into the Same Chromosomal Site as CTXφ. J. Bacteriol. 185, 5685–5696 (2003).</ref> | ||
+ | |1260523 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255015 BBa_K2255015] | ||
+ | |- | ||
+ | |''Xanthomonas campestris'' | ||
+ | |ΦLf<ref>Tseng, Y.-H., Lo, M.-C., Lin, K.-C., Pan, C.-C. & Chang, R.-Y. Characterization of filamentous bacteriophage ΦLf from Xanthomonas campestris pv. campestris. Journal of general virology 71, 1881–1884 (1990).</ref> | ||
+ | |3730653 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255016 BBa_K2255016] | ||
+ | |- | ||
+ | |''Xylella fastidiosa'' | ||
+ | |XfasM23<ref>Chen, J. & Civerolo, E. L. Morphological evidence for phages in Xylella fastidiosa. Virology Journal 5, 75 (2008).</ref> | ||
+ | |6203562 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255017 BBa_K2255017] | ||
+ | |- | ||
+ | |''Xanthomonas fucans'' | ||
+ | |XacF1<ref>Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M. & Yamada, T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 5, (2014).</ref> | ||
+ | |17150318 | ||
+ | |[http://parts.igem.org/Part:BBa_K2255018 BBa_K2255018] | ||
+ | |} | ||
+ | |||
+ | Table showing the attachment proteins from various filamentous phages. |
Revision as of 22:00, 13 October 2017
Part Collection
Our collection of parts is designed to allow the creation of proteins, or phage-like particles, that target a wide range of different Gram-negative bacteria. Each part corresponds to the domains 1 (D1) and 2 (D2) from the p3 protein of filamentous phages targeting the different organisms. The parts in the collection are expected to be used as fusion proteins and so conform to the [http://parts.igem.org/Assembly_standard_25 Rfc25] standard. To know more about the design of these parts, and how we used them to make phage-like particles in our project, you can check out our design page.
This part collection contains the following biobricks all in [http://parts.igem.org/Assembly_standard_25 Rfc25] format:
- p3_E.coli (RFC25) - [http://parts.igem.org/Part:BBa_K2255008 BBa_K2255008]
- p3_ N.gonorrhoeae (RFC25) - [http://parts.igem.org/Part:BBa_K2255009 BBa_K2255009]
- p3_P.aeruginosa (RFC25) - [http://parts.igem.org/Part:BBa_K2255010 BBa_K2255010]
- p3_R.solanacearum_RSM1 (RFC25) - [http://parts.igem.org/Part:BBa_K2255011 BBa_K2255011]
- p3_R.solanacearum_RSS1 (RFC25) - [http://parts.igem.org/Part:BBa_K2255012 BBa_K2255012]
- p3_V.Cholerae_CTXΦ (RFC25) - [http://parts.igem.org/Part:BBa_K2255013 BBa_K2255013]
- p3_V.Cholerae_fs2 (RFC25) - [http://parts.igem.org/Part:BBa_K2255014 BBa_K2255014]
- p3_V.Cholerea_VGJΦ (RFC25) - [http://parts.igem.org/Part:BBa_K2255015 BBa_K2255015]
- p3_X.campestris (RFC25) - [http://parts.igem.org/Part:BBa_K2255016 BBa_K2255016]
- p3_X.fastidiosa (RFC25) - [http://parts.igem.org/Part:BBa_K2255017 BBa_K2255017]
- p3_X.fuscans (RFC25) - [http://parts.igem.org/Part:BBa_K2255018 BBa_K2255018]
Design
Design
The domain 3 (D3) and the signal sequence are both the best conserved part from the attachment protein. Using a global protein alignment (Needleman-Wunsch and MUSCLE alignments), using two or three sequence at one time, we were eventually able to determinate domain 1 (D1) and domain 2 (D2) from the attachment protein of each phages.
We were able to found these domains because each of them is separated by a flexible sequence composed of Glycine and Serine [1]. Then we retrotranslate this sequence in a nucleotidic sequence and we used iDT to optimise this sequence for E.coli production.
Pathogene | Filamentous phage | GI | Part ID |
---|---|---|---|
Escherichia coli | M13 (fd,ff)[2] | 927334 | BBa K2255008 |
Neisseria gonorrheae | NgoΦ6[3] | 1260906 | [http://parts.igem.org/Part:BBa_K2255009 BBa_K2255009] |
Pseudomonas aeruginosa | Pf3[4] | 215374 | [http://parts.igem.org/Part:BBa_K2255010 BBa_K2255010] |
Ralstonia solanacearum | RSM1Φ[5] | 5179368 | [http://parts.igem.org/Part:BBa_K2255011 BBa_K2255011] |
RSS1Φ[5] | 4525385 | [http://parts.igem.org/Part:BBa_K2255012 BBa_K2255012] | |
Vibrio Cholerea | CTXΦ[6] | 26673076 | [http://parts.igem.org/Part:BBa_K2255013 BBa_K2255013] |
VFJΦ(fs2)[7] | 1261866 | [http://parts.igem.org/Part:BBa_K2255014 BBa_K2255014] | |
VGJΦ[8] | 1260523 | [http://parts.igem.org/Part:BBa_K2255015 BBa_K2255015] | |
Xanthomonas campestris | ΦLf[9] | 3730653 | [http://parts.igem.org/Part:BBa_K2255016 BBa_K2255016] |
Xylella fastidiosa | XfasM23[10] | 6203562 | [http://parts.igem.org/Part:BBa_K2255017 BBa_K2255017] |
Xanthomonas fucans | XacF1[11] | 17150318 | [http://parts.igem.org/Part:BBa_K2255018 BBa_K2255018] |
- ↑ Heilpern, A. J. & Waldor, M. K. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J. Bacteriol. 185, 1037–1044 (2003).
- ↑ Smeal, S. W., Schmitt, M. A., Pereira, R. R., Prasad, A. & Fisk, J. D. Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500, 259–274 (2017).
- ↑ Piekarowicz, A. et al. Neisseria gonorrhoeae Filamentous Phage NgoΦ6 Is Capable of Infecting a Variety of Gram-Negative Bacteria. J Virol 88, 1002–1010 (2014).
- ↑ Luiten, R. G., Schoenmakers, J. G. & Konings, R. N. The major coat protein gene of the filamentous Pseudomonas aeruginosa phage Pf3: absence of an N-terminal leader signal sequence. Nucleic Acids Res 11, 8073–8085 (1983).
- ↑ 5.0 5.1 T, K. et al. Genomic characterization of the filamentous integrative bacteriophages {phi}RSS1 and {phi}RSM1, which infect Ralstonia solanacearum., Genomic Characterization of the Filamentous Integrative Bacteriophages φRSS1 and φRSM1, Which Infect Ralstonia solanacearum. J Bacteriol 189, 189, 5792, 5792–5802 (2007).
- ↑ Heilpern, A. J. & Waldor, M. K. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J. Bacteriol. 185, 1037–1044 (2003).
- ↑ Ikema, M. & Honma, Y. A novel filamentous phage, fs-2, of Vibrio cholerae O139. Microbiology 144, 1901–1906 (1998).
- ↑ Campos, J. et al. VGJφ, a Novel Filamentous Phage of Vibrio cholerae, Integrates into the Same Chromosomal Site as CTXφ. J. Bacteriol. 185, 5685–5696 (2003).
- ↑ Tseng, Y.-H., Lo, M.-C., Lin, K.-C., Pan, C.-C. & Chang, R.-Y. Characterization of filamentous bacteriophage ΦLf from Xanthomonas campestris pv. campestris. Journal of general virology 71, 1881–1884 (1990).
- ↑ Chen, J. & Civerolo, E. L. Morphological evidence for phages in Xylella fastidiosa. Virology Journal 5, 75 (2008).
- ↑ Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M. & Yamada, T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 5, (2014).