Line 302: | Line 302: | ||
if (slideIndex > slides.length) {slideIndex = 1} | if (slideIndex > slides.length) {slideIndex = 1} | ||
slides[slideIndex-1].style.display = "block"; | slides[slideIndex-1].style.display = "block"; | ||
− | setTimeout(showSlides, | + | setTimeout(showSlides, 4000); // Change image every 2 seconds(2000) |
} | } | ||
Revision as of 02:59, 18 October 2017
Advisors
hi
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
Students
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.
thou art nameless
We are evaluating our parts by verifying that they can be used to degrade PET plastic. We are setting up an experiment in which we will test for the the ability of E.coli bacteria engineered with each part to degrade PET plastic. Glass culture tubes were set up containing LB media and small squares of PET plastic that had been weighed beforehand. The approximate dimensions of the plastic squares were 20x15x0.5mm, and they weighed between 101 and 89 mg. After the bacteria with the gene have been added, the plastic will be weighed twice a week to check for lost material. Some tubes will be incubated at 30 degrees Celsius because that is the best growth temperature for the Ideonealla bacteria, and some will be incubated at 37 degrees Celsius because that is the best temperature for E. coli.