Difference between revisions of "Team:UESTC-China/design"

Line 5: Line 5:
 
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
 
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
 
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
 
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<title>Team:UESTC-China/Design</title>
+
<title>Team:UESTC-China/Design - 2017.igem.org</title>
  
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">
+
<link rel="stylesheet" href="https://2017.igem.org/Template:UESTC-China/css/bootstrap?action=raw&ctype=text/css">
 
<script src="https://2017.igem.org/Template:UESTC-China/js/jquery?action=raw&ctype=text/javascript"></script>
 
<script src="https://2017.igem.org/Template:UESTC-China/js/jquery?action=raw&ctype=text/javascript"></script>
 
<script src="https://2017.igem.org/Template:UESTC-China/js/bootstrap-js?action=raw&ctype=text/javascript"></script>
 
<script src="https://2017.igem.org/Template:UESTC-China/js/bootstrap-js?action=raw&ctype=text/javascript"></script>
 +
<script src="https://2017.igem.org/Template:UESTC-China/js/back-to-top?action=raw&ctype=text/javascript"></script>
  
 
<link rel="stylesheet" href="https://2017.igem.org/Template:UESTC-China/css/styleset?action=raw&ctype=text/css" />
 
<link rel="stylesheet" href="https://2017.igem.org/Template:UESTC-China/css/styleset?action=raw&ctype=text/css" />
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:UESTC-China/css/Safety?action=raw&ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:UESTC-China/css/common-use?action=raw&ctype=text/css" />
+
 
 +
<!--<link rel="stylesheet" type="text/css" href="css/template.css" />-->
 +
 
 
<style type="text/css">
 
<style type="text/css">
 
.col-lg-10 .subHead {
 
.col-lg-10 .subHead {
Line 62: Line 65:
 
</head>
 
</head>
  
<body data-spy="scroll" data-target="#myScrollspy" data-offset="20"> <!--20为监听的距离顶部的偏移像素-->
+
<body data-spy="scroll" data-target="#myScrollspy" data-offset="20">
 +
<!--20为监听的距离顶部的偏移像素-->
 
<div class="head-v3">
 
<div class="head-v3">
<div class="nav-up">
+
<div class="nav-up">
<a href="https://2017.igem.org/Team:UESTC-China/hhh">
+
<a href="https://2017.igem.org/Team:UESTC-China">
<img src="https://static.igem.org/mediawiki/2017/3/3c/T--UESTC-China--logo.jpg" alt="" class="logo" />
+
<img src="https://static.igem.org/mediawiki/2017/3/3c/T--UESTC-China--logo.jpg" alt="" class="logo" />
</a>
+
</a>
  
<div class="nav-inner">
+
<div class="nav-inner">
<div class="nav-v3">
+
<div class="nav-v3">
  
<ul>
+
<ul>
<!--<li class="nav-up-selected-inpage" _t_nav="home">
+
<li class="" _t_nav="Achievement">
<h2><a href="#">首页</a></h2>z
+
<h2><a href="https://2017.igem.org/Team:UESTC-China/achievement">ACHIEVEMENT</a></h2>
</li>-->
+
</li>
  
<li class="" _t_nav="Achievement">
+
<li class="" _t_nav="Project">
<h2><a href="https://2017.igem.org/Team:UESTC-China/achievement">Achievement</a></h2>
+
<h2><a href="javascript:void(0);">PROJECT ∨</a></h2>
</li>
+
</li>
  
<li class="" _t_nav="Project">
+
<li class="" _t_nav="Modeling">
<h2><a href="javascript:void(0);">Project ∨</a></h2>
+
<h2><a href="https://2017.igem.org/Team:UESTC-China/Model">MODELING</a></h2>
</li>
+
</li>
  
<li class="Modeling" _t_nav="Modeling">
+
<li class="" _t_nav="Attribution">
<h2><a href="https://2017.igem.org/Team:UESTC-China/modeling">Modeling ∨</a></h2>
+
<h2><a href="https://2017.igem.org/Team:UESTC-China/Attributions">ATTRIBUTIONS</a></h2>
</li>
+
</li>
  
<li class="" _t_nav="Attribution">
+
<li class="" _t_nav="HumanPractice">
<h2><a href="https://2017.igem.org/Team:UESTC-China/attribution">Attribution</a></h2>
+
<h2><a href="javascript:void(0);">HUMAN PRACTICE ∨</a></h2>
</li>
+
</li>
  
<li class="" _t_nav="HumanPractice">
+
<li class="" _t_nav="Team">
<h2><a href="javascript:void(0);">Human Practice ∨</a></h2>
+
<h2><a href="javascript:void(0);">TEAM ∨</a></h2>
</li>
+
</li>
  
<li class="" _t_nav="Team">
+
<li class="" _t_nav="Notebook">
<h2><a href="javascript:void(0);">Team ∨</a></h2>
+
<h2><a href="javascript:void(0);">NOTEBOOK ∨</a></h2>
</li>
+
</li>
 +
</ul>
 +
</div>
 +
</div>
 +
</div>
  
<li class="" _t_nav="Notebook">
+
<div class="nav-down">
<h2><a href="javascript:void(0);">Notebook ∨</a></h2>
+
<div id="Project" class="nav-down-menu" style="display: none;" _t_nav="Project">
</li>
+
<div class="nav-down-inner">
</ul>
+
<dl style="margin-right: 670px;">
</div>
+
<dd>
</div>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/part">Part</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Demonstrate">Demonstrate</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/design">Design</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/description">Introduction</a>
 +
</dd>
 +
</dl>
 
</div>
 
</div>
 +
</div>
  
<div class="nav-down">
+
<!--<div id="Modeling" class="nav-down-menu" style="display: none;" _t_nav="Modeling">
<div id="Project" class="nav-down-menu" style="display: none;" _t_nav="Project">
+
<div class="nav-down-inner">
+
<dl style="margin-right: 702px;">
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/part">Part</a>
+
</dd>
+
</dl>
+
<dl>
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/result">Result</a>
+
</dd>
+
</dl>
+
<dl>
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/design">Design</a>
+
</dd>
+
</dl>
+
<dl>
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/description">Description</a>
+
</dd>
+
</dl>
+
</div>
+
</div>
+
 
+
<div id="Modeling" class="nav-down-menu" style="display: none;" _t_nav="Modeling">
+
 
<div class="nav-down-inner">
 
<div class="nav-down-inner">
 
<dl style="margin-right: 565px;">
 
<dl style="margin-right: 565px;">
Line 163: Line 163:
 
</dl>
 
</dl>
 
</div>
 
</div>
</div>
+
</div>-->
  
<div id="HumanPractice" class="nav-down-menu" style="display: none;" _t_nav="HumanPractice">
+
<div id="HumanPractice" class="nav-down-menu" style="display: none;" _t_nav="HumanPractice">
<div class="nav-down-inner">
+
<div class="nav-down-inner">
<dl style="margin-right: 270px;">
+
<dl style="margin-right: 250px;">
<dd>
+
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/hp-collaboration">Collaboration</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Engagement">Engagement</a>
</dd>
+
</dd>
</dl>
+
</dl>
<dl>
+
<dl>
<dd>
+
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/engagement">Engagement</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/research">Supporting Research</a>
</dd>
+
</dd>
</dl>
+
</dl>
<dl>
+
<dl>
<dd>
+
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/research">Research</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/our-story">Our Story</a>
</dd>
+
</dd>
</dl>
+
</dl>
<dl>
+
</div>
<dd>
+
</div>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/our-story">Our Story</a>
+
</dd>
+
</dl>
+
</div>
+
</div>
+
  
<div id="Team" class="nav-down-menu" style="display: none;" _t_nav="Team">
+
<div id="Team" class="nav-down-menu" style="display: none;" _t_nav="Team">
<div class="nav-down-inner">
+
<div class="nav-down-inner">
<dl style="margin-right: 128px;">
+
<dl style="margin-right: 115px;">
<dd>
+
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/collaboration">Collaboration</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Collaborations">Collaborations</a>
</dd>
+
</dd>
</dl>
+
</dl>
<dl>
+
<dl>
<dd>
+
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/team-introduce">Team Introduce</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/team-introduce">Team Introduce</a>
</dd>
+
</dd>
</dl>
+
</dl>
</div>
+
</div>
</div>
+
</div>
 
+
<div id="Notebook" class="nav-down-menu" style="display: none;" _t_nav="Notebook">
+
<div class="nav-down-inner">
+
<dl style="margin-right: 37px;">
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/interlab">Interlab</a>
+
</dd>
+
</dl>
+
<dl>
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/safety">Safety</a>
+
</dd>
+
</dl>
+
<dl>
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/protocal">Protocal</a>
+
</dd>
+
</dl>
+
<dl>
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/day-note">Day Note</a>
+
</dd>
+
</dl>
+
</div>
+
</div>
+
  
 +
<div id="Notebook" class="nav-down-menu" style="display: none;" _t_nav="Notebook">
 +
<div class="nav-down-inner">
 +
<dl style="margin-right: 36px;">
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/InterLab">Interlab</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/safety">Safety</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/protocal">Protocal</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Plant">Plant</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/day-note">Day Note</a>
 +
</dd>
 +
</dl>
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
</div>
 +
</div>
  
 
<!--************下面为正文******************-->
 
<!--************下面为正文******************-->
<p><img src="https://static.igem.org/mediawiki/2017/1/14/T--UESTC-China--placeholder_design.jpg" alt="" class="hhh" /></p>
+
<p><img src="img/111.png" alt="" class="hhh" /></p>
  
 
<div class="container">
 
<div class="container">
 
<div class="row">
 
<div class="row">
 
<nav class="col-lg-2" id="myScrollspy">
 
<nav class="col-lg-2" id="myScrollspy">
<ul class="nav nav-pills nav-stacked" data-spy="affix" data-offset-top="400"> <!--data-offset-top为监听滑动多少像素时,侧边栏进行fixed.-->
+
<ul class="nav nav-pills nav-stacked" data-spy="affix" data-offset-top="400">
 +
<!--data-offset-top为监听滑动多少像素时,侧边栏进行fixed.-->
 
<li class="active">
 
<li class="active">
<a href="#Considerations">Considerations</a>
+
<a href="#Overview">Overview</a>
 +
</li>
 +
<li>
 +
<a href="#Construct-the-pathway" style="font-size: 14.5px;">Construct the pathway</a>
 
</li>
 
</li>
 
<li>
 
<li>
<a href="#Basic-Design">Basic Design</a>
+
<a href="#Improve-the-function">Improve the function</a>
 
</li>
 
</li>
 
<li>
 
<li>
<a href="#Optimized-Design">Optimized Design</a>
+
<a href="#References">References</a>
 
</li>
 
</li>
 
</ul>
 
</ul>
Line 253: Line 257:
  
 
<div class="col-lg-10">
 
<div class="col-lg-10">
<div id="Considerations">
+
<div id="Overview">
<h2>Considerations</h2>
+
<h2>Overview</h2>
<br /><p>Considering the problem of durable TCP in the soil and combining the article degrading TCP into glycerol, we are intended to create a phytoremediation system degrading TCP constantly[1].
+
As the wild type of DhaA and HheC have low activity, in order to improve the degradation efficiency, we found the mutant Dha31[2] and HheC-W249P[3] by literature. Therefore, we decided to use Dha31, HheC-W249P and EchA to degrade TCP to glycerol. As well as this, we also need to consider that what kind of strategies could be suitable for the multigene co-expression? How can we achieve the three target proteins to accumulate stably in the tobacco? What methods can be used for improvement of protein expression?
+
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--UESTC-China--design_1.jpg" style="width: 95%;"/></p>
</p>
+
<p>As early as 2013, for the degradation of TCP, 2013iGEM team of our school had built the plasmid of DhaA31 and HheC-W249P , and used E. coli as a chassis biology where the two enzymes achieved the purpose of degradation. Subsequent studies have shown that the triple enzyme cascade pathway consisting of DhaA31, HheC and EchA can convert TCP into non-toxic glycerol[1]. In order to increase degradation efficiency, we used the excellent mutant DhaA31[2], HheC-W249P[3], together with the wild type EchA to realize gene stacking. We used synthetic biological means to construct a plasmid carried three genes firstly. Compared to physical and microbial degradation, phytoremediation is more sustained and efficient by which we can achieve the degradation pathway. Considering that the plant is likely to express EchA under stress, we will build a plasmid containing only the first two genes, and finally get a highly efficient phytoremediation pathway of TCP. In the process of degradation, toxic effects have decreased as well as the growth cycle of plants has extended.</p>
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--UESTC-China--design_1.jpg" style="width: 70%;"/></p>
+
 
</div>
 
</div>
 
+
<div id="Basic-Design">
+
<div id="Construct-the-pathway">
<h2>Basic Design</h2>
+
<h2>Construct the pathway of phytoremediation</h2>
<br /><p>In the expression vector design, we use the pGSD series of plant expression vectors and select 35S constitutive promoters from cauliflower mosaic virus (CaMV) to express our three enzymes; Golden Gate are used for DNA assembly. Besides these, to achieve the effective transmission of multiple foreign genes, several kinds of 2A peptide[4], from foot-and-mouth disease virus (FMDV) and some other picornaviruses, are fused to HheC-W249P, EchA and resistant gene, which acts as an autonomous element, making it an important tool for co-ordinated synthesis of multiple proteins from one open reading frame and making a ribosome jumping.</p>
+
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> Single Gene Vector</b></p>
+
<br /><p>For the purpose of achieving TCP degradation step by step,we start our project with three single gene vectors, piGEM2016-001,piGEM2016-002 and piGEM2016-003 including DhaA31,HheC-W249P and EchA respectively ,which are used for preparatory protein expression and degradation testing.</p>
+
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/c/cc/T--UESTC-China--design_2.png" style="width: 80%;"/></p>
+
 
 
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> Multi-gene Vector</b></p>
+
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/c/cc/T--UESTC-China--design_2.png" style="width: 75%;"/></p>
<br /><p>To make the ultimate goals of convert TCP pollutions to glycerol, we design a complicate vector piGEM2016-004 including DhaA31, HheC-W249P and EchA.</p>
+
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/d/d1/T--UESTC-China--design_3.jpg" style="width: 100%;"/></p>
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/b/b8/T--UESTC-China--design_3.png" alt="" style="width: 60%;"/></p>
+
<p>DhaA, HheC, EchA these three enzymes are the key enzymes to degrade TCP and produce glycerol. Their expression activity in tobacco determines the degradation efficiency of TCP. First, we selected pCaMV35s, a commonly used promoters in plant and the application of 2A peptide strategy to achieve the stable expression of three enzymes in tobacco[4]. In order to realize the degradation of TCP and realize the production of beneficial glycerol, we constructed a plasmid model containing three enzymes of DhaA31, HheC-W249P and EchA. When DhaA31 works independently in tobacco, 1,2,3-TCP can be degraded to 2,3-DCP. When HheC-W249P works independently in tobacco, 2,3-DCP can be degraded to ECH, and CPD is degraded to GDL, when EchA work independently in tobacco, it can degrade ECH into CPD and degrade GDL into glycerol. In 2013, UESTC-China induced DhaA31and HheC-W249P in E.coli, and this year we induced the two enzymes together with EchA in tobacco. In this way, 1,2,3-TCP can be degraded into glycerol, so we first designed a three-gene plasmid. Considering the plant itself may exist EchA[5], in order to avoid too many exogenous enzymes and affect plant metabolism, so we designed a plasmid with only the first two enzymes.</p>
 +
</div>
 +
 +
<div id="Improve-the-function">
 +
<h2>Improve the function of our tobacco</h2>
 
 
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> A Little Guess</b></p>
+
<p>Only degrading 1,2,3-TCP is not enough, we also pursue a more efficient way. Considering that the three enzymes expressed mainly in the roots where tobacco are in direct contact with wastewater or soil containing 1,2,3-TCP, we designed the plant root-specific expression promoter pYK10 helping enzymes fixed at the root[6]. Thus the development of super-tobacco roots is particularly important, in order to improve the biomass of roots to increase the yield of enzyme, the CKX gene is selected by us[7]. Finally, in order to make the three enzymes more susceptible to TCP, we chose the cell wall localization signal peptide AO-S to achieve fusion expression with three enzymes (at the same time AO-S also has the role of stabling enzyme expression)[8]. Through the improvements above, we get more powerful super tobacco at last.</p>
<br /><p>Epoxide hydrolases, converting epoxides to diols, are widely distributed in the various species of mammals, insects, fungi, bacteria and plants. A role for Epoxide hydrolases in plants would be to break down epoxides accumulating during stress into less reactive compounds[5]. Furthermore, it’s reported that NtEH1, a kind of cytosolic Epoxide hydrolase, was found in the Nicotiana tabacum, which was expressed only in TMV-resistant tobacco after infection[6]. Hence, it’s suspected that there may be stable expression of epoxide hydrolases or inducible by epoxides stress in the Nicotiana tabacum. To verify this suppose, we design a two genes vector system piGEM2016-005 excluding EchA.</p>
+
<p>We plan to apply super-tobacco to real life in the future, and for this purpose we should take full account of biosafety and maneuverability. We will induce AdCP gene into our plans in the future because of its capability to lead to pollen abortion. At the same time, chloroplast transformation will be taken into consideration to avoid gene flow and improve gene expression. Thus, we can both meet the actual needs and ensure the biosafety. </p>
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/f/fc/T--UESTC-China--design_4.png" style="width: 60%;"/></p>
+
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/a/ac/T--UESTC-China--design_4.jpg" style="width: 90%;"/></p>
 
</div>
 
</div>
 
+
<div id="Optimized-Design">
+
<div id="References">
<h2>Optimized Design</h2>
+
<h2>References</h2>
<br /><p>Based on basic design, we hope to further optimize the vector expression system and make use of plant roots for better TCP degradation. Firstly, we use a root-specific promoter termed as PYK10[7] to enhance root-specific expression of protein. Secondly, a root-enhancing gene[8] is used to enhance the development of plant root systems. Thirdly, there is a signal peptide named by AOS[9] that can optimize the gene expression.</p>
+
 
 
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> PYK10:root-specific promoter</b></p>
+
<ol>
<br /><p>Considering that TCP is mainly present in the soil and groundwater, root-specific expression may make it easier for TCP to be contacted with the enzyme. In addition, the expression of the three enzymes is limited to the roots, which, to a certain extent, play a role in enrichment. Therefore, we hope to use a root-specific promoter to express three target genes. After seeking hard, the root-specific promoter pYK10 from Arabidopsis thaliana is selected and piGEM2017-024 is designed.</p>
+
<li>Dvorak, P., et al., Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ Sci Technol, 2014. 48(12): p. 6859-66.</li>
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/e/e8/T--UESTC-China--design_5.png" style="width: 60%;"/></p>
+
+
<li>Pavlova, M., et al., Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol, 2009. 5(10): p. 727-33.</li>
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> CKX3:cytokinin-degrading cytokinin oxidase 3</b></p>
+
<br /><p>The plant cytokinin is supposed as a kind of essential regulator of development of plant root systems. It’s reported that cytokinin-degrading cytokinin oxidase (CKX) is able to enhance root systems and get larger root through reducing the plant innate cytokinin status[8]. In CKX gene family, CKX3 effect is most outstanding. In order to improve target enzyme’s expression in the root, we plan to overexpress the CKX3 gene in tobacco. However, due to the expression of CKX in the whole plant plant will affect the growth and development of plants[8], so we select the PYK10 promoter to express CKX3 in the root. Ultimately, we built piGEM2017-021 using PYk10 and CKX3.Also, we design another vector named by piGEM2017-025 for control.</p>
+
<li>Wang, X., et al., Improvement of the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by engineering C-terminal amino acids. J Biotechnol, 2015. 212: p. 92-8.</li>
<img src="https://static.igem.org/mediawiki/2017/0/0b/T--UESTC-China--design_6.png" style="width: 50%;"/>
+
<img src="https://static.igem.org/mediawiki/2017/f/f1/T--UESTC-China--design_7.png" style="width: 49%;"/>
+
<li>Buren, S., et al., Use of the foot-and-mouth disease virus 2A peptide co-expression system to study intracellular protein trafficking in Arabidopsis. PLoS One, 2012. 7(12): p. e51973.</li>
+
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> AOS:N-terminal ER-targeting signal peptide</b></p>
+
<li>Guo, A., J. Durner, and D.F. Klessig, Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J, 1998. 15(5): p. 647-56.</li>
<br /><p>AOS, an endoplasmic reticulum-targeting signal peptide from cucumber ascorbate oxidase, has great importance in protein expression. It’s reported that target protein can be modified with high mannose-type N-linked oligosaccharide(s) when the signal peptide is fused to protein[9], which is essential for protein stable accumulation in the plants cell. Furthermore, by fusing it to protein, the protein will be targeted at the apoplastic region, mainly cell walls[9], which is good for TCP degradation by means of plant roots. In order to avoid the phenomenon of transgenic silencing and improve the degradation effect of tobacco roots, we fuse AOs to three target genes. Accordingly, we constructed piGEM2017-014, piGEM2017-015, piGEM2017-016.</p>
+
<br /><p>Combine all three strategies, we design two complicate vectors system termed as piGEM2017-022 and piGEM2017-022.</p>
+
<li>Nitz, I., et al., Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci, 2001. 161(2): p. 337-346.</li>
<img src="https://static.igem.org/mediawiki/2017/9/9c/T--UESTC-China--design_8.png" style="width: 49%;"/>
+
<img src="https://static.igem.org/mediawiki/2017/8/86/T--UESTC-China--design_9.png" style="width: 50%;"/>
+
<li>Werner, T., et al., Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 2010. 22(12): p. 3905-20.</li>
+
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> GUS Staining Verification</b></p>
+
<li>Nanasato, Y., et al., Biodegradation of gamma-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA. Plant Cell Rep, 2016. 35(9): p. 1963-74.</li>
<br /><p>For easily visualizing the expression of target genes in Nicotiana tabacum, we constructed recombinant plasmids, in which a GUS gene was cloned after the three target genes.</p>
+
</ol>
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/3/37/T--UESTC-China--design_10.png" style="width: 60%;"/></p>
+
+
<ul>
+
<li>1. Dvorak, P., et al., Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ Sci Technol, 2014. 48(12): p. 6859-66.</li>
+
<li>2. Pavlova, M., et al., Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol, 2009. 5(10): p. 727-33.</li>
+
<li>3. Wang, X., et al., Improvement of the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by engineering C-terminal amino acids. J Biotechnol, 2015. 212: p. 92-8.</li>
+
<li>4. Buren, S., et al., Use of the foot-and-mouth disease virus 2A peptide co-expression system to study intracellular protein trafficking in Arabidopsis. PLoS One, 2012. 7(12): p. e51973.</li>
+
<li>5. Murray, G.I., et al., The expression of cytochrome P-450, epoxide hydrolase, and glutathione S-transferase in hepatocellular carcinoma. Cancer, 1993. 71(1): p. 36-43.</li>
+
<li>6. Guo, A., J. Durner, and D.F. Klessig, Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J, 1998. 15(5): p. 647-56.</li>
+
<li>7. Nitz, I., et al., Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci, 2001. 161(2): p. 337-346.</li>
+
<li>8. Werner, T., et al., Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 2010. 22(12): p. 3905-20.</li>
+
<li>9. Nanasato, Y., et al., Biodegradation of gamma-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA. Plant Cell Rep, 2016. 35(9): p. 1963-74.</li>
+
</ul>
+
 
 
 
</div>
 
</div>
 +
 
<br /><br /><br /><br /><br />
 
<br /><br /><br /><br /><br />
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
<a id="btnTop" class="btnTop" href="javascript:;" title="Back to top" style="display: none;">
 +
<img src="https://static.igem.org/mediawiki/2017/f/f5/T--UESTC-China--back-to-top.png" class="imageTop">
 +
</a>
  
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 20:59, 30 October 2017

Team:UESTC-China/Design - 2017.igem.org

Overview

As early as 2013, for the degradation of TCP, 2013iGEM team of our school had built the plasmid of DhaA31 and HheC-W249P , and used E. coli as a chassis biology where the two enzymes achieved the purpose of degradation. Subsequent studies have shown that the triple enzyme cascade pathway consisting of DhaA31, HheC and EchA can convert TCP into non-toxic glycerol[1]. In order to increase degradation efficiency, we used the excellent mutant DhaA31[2], HheC-W249P[3], together with the wild type EchA to realize gene stacking. We used synthetic biological means to construct a plasmid carried three genes firstly. Compared to physical and microbial degradation, phytoremediation is more sustained and efficient by which we can achieve the degradation pathway. Considering that the plant is likely to express EchA under stress, we will build a plasmid containing only the first two genes, and finally get a highly efficient phytoremediation pathway of TCP. In the process of degradation, toxic effects have decreased as well as the growth cycle of plants has extended.

Construct the pathway of phytoremediation

DhaA, HheC, EchA these three enzymes are the key enzymes to degrade TCP and produce glycerol. Their expression activity in tobacco determines the degradation efficiency of TCP. First, we selected pCaMV35s, a commonly used promoters in plant and the application of 2A peptide strategy to achieve the stable expression of three enzymes in tobacco[4]. In order to realize the degradation of TCP and realize the production of beneficial glycerol, we constructed a plasmid model containing three enzymes of DhaA31, HheC-W249P and EchA. When DhaA31 works independently in tobacco, 1,2,3-TCP can be degraded to 2,3-DCP. When HheC-W249P works independently in tobacco, 2,3-DCP can be degraded to ECH, and CPD is degraded to GDL, when EchA work independently in tobacco, it can degrade ECH into CPD and degrade GDL into glycerol. In 2013, UESTC-China induced DhaA31and HheC-W249P in E.coli, and this year we induced the two enzymes together with EchA in tobacco. In this way, 1,2,3-TCP can be degraded into glycerol, so we first designed a three-gene plasmid. Considering the plant itself may exist EchA[5], in order to avoid too many exogenous enzymes and affect plant metabolism, so we designed a plasmid with only the first two enzymes.

Improve the function of our tobacco

Only degrading 1,2,3-TCP is not enough, we also pursue a more efficient way. Considering that the three enzymes expressed mainly in the roots where tobacco are in direct contact with wastewater or soil containing 1,2,3-TCP, we designed the plant root-specific expression promoter pYK10 helping enzymes fixed at the root[6]. Thus the development of super-tobacco roots is particularly important, in order to improve the biomass of roots to increase the yield of enzyme, the CKX gene is selected by us[7]. Finally, in order to make the three enzymes more susceptible to TCP, we chose the cell wall localization signal peptide AO-S to achieve fusion expression with three enzymes (at the same time AO-S also has the role of stabling enzyme expression)[8]. Through the improvements above, we get more powerful super tobacco at last.

We plan to apply super-tobacco to real life in the future, and for this purpose we should take full account of biosafety and maneuverability. We will induce AdCP gene into our plans in the future because of its capability to lead to pollen abortion. At the same time, chloroplast transformation will be taken into consideration to avoid gene flow and improve gene expression. Thus, we can both meet the actual needs and ensure the biosafety.

References

  1. Dvorak, P., et al., Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ Sci Technol, 2014. 48(12): p. 6859-66.
  2. Pavlova, M., et al., Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol, 2009. 5(10): p. 727-33.
  3. Wang, X., et al., Improvement of the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by engineering C-terminal amino acids. J Biotechnol, 2015. 212: p. 92-8.
  4. Buren, S., et al., Use of the foot-and-mouth disease virus 2A peptide co-expression system to study intracellular protein trafficking in Arabidopsis. PLoS One, 2012. 7(12): p. e51973.
  5. Guo, A., J. Durner, and D.F. Klessig, Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J, 1998. 15(5): p. 647-56.
  6. Nitz, I., et al., Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci, 2001. 161(2): p. 337-346.
  7. Werner, T., et al., Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 2010. 22(12): p. 3905-20.
  8. Nanasato, Y., et al., Biodegradation of gamma-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA. Plant Cell Rep, 2016. 35(9): p. 1963-74.