Difference between revisions of "Team:Tianjin/Description"

Line 161: Line 161:
 
</p>
 
</p>
 
<p>This year, we are planning to utilize the natural phenomenon of mating-type switching to create a new concept called mating switcher for functional transformation and safeguards in Saccharomyces cerevisiae with gene-editing technique’s help. We will take this new kind of switcher into some very interesting applications, including heavy metal treatment and cell signal swiching, to improve the maneuverability of this yeast. Moreover, we will discuss the possibility of this concept’s utilization in other eukarya.</p>
 
<p>This year, we are planning to utilize the natural phenomenon of mating-type switching to create a new concept called mating switcher for functional transformation and safeguards in Saccharomyces cerevisiae with gene-editing technique’s help. We will take this new kind of switcher into some very interesting applications, including heavy metal treatment and cell signal swiching, to improve the maneuverability of this yeast. Moreover, we will discuss the possibility of this concept’s utilization in other eukarya.</p>
 +
 +
 +
<img src="https://static.igem.org/mediawiki/2017/1/15/Tianjin-copperworldwide.jpg">
 +
 +
 +
 
<div class='content-column one_half'>
 
<div class='content-column one_half'>
  

Revision as of 13:28, 26 October 2017

/* OVERRIDE IGEM SETTINGS */

Description


Saccharomyces cerevisiae is a single-celled organism with three types, called a, α, and a/α. In Saccharomyces cerevisiae, three cell types differ from each other in their DNA content at the MAT locus which specifies the cell types. In nature, the two haploid cell types (a and α) of this kind of budding yeast are able to interconvert in a reversible manner by DNA-rearrangement with a DSB at the MAT locus, and this process is called mating-type switching.

This year, we are planning to utilize the natural phenomenon of mating-type switching to create a new concept called mating switcher for functional transformation and safeguards in Saccharomyces cerevisiae with gene-editing technique’s help. We will take this new kind of switcher into some very interesting applications, including heavy metal treatment and cell signal swiching, to improve the maneuverability of this yeast. Moreover, we will discuss the possibility of this concept’s utilization in other eukarya.