Difference between revisions of "Team:BIT-China/Model/GPCRpathway"

Line 1: Line 1:
{{BIT-China}}
+
{BIT-China}}
 
<html>
 
<html>
 
<body>
 
<body>
Line 6: Line 6:
 
    </div>
 
    </div>
 
    <section class="content_container" id="mytop">
 
    <section class="content_container" id="mytop">
    <h2 class="title-h2">MODEL-Docking </h2>
+
<h2 class="title-h2">Mating pheromone pathway model</h2>
    <div class="cd-section" id="Purpose">
+
<p class="my-content-p">We expected to use RFP intensity to predict the sweetness based on our system. So we needed an insight into relationship between RFP and sweetness. But lots of factor can impact the signal output so that we decided to divide our system into two parts, single cell model and yeast growth model. </p>
<h3 class="title-h3">STRUCTURE MODEL</h3>
+
<h4 class="title-h4">Purpose </h4>
+
<p class="my-content-p">In order to confirm whether this "radar" T1R2/T1R3 can "sense" the sweetness of different sweetener, we simulated the model of receptor's structure[1] [4]. It was helpful to observe how the sweeteners binding to T1R2/T1R3 receptor visually. Moreover, we expected to find some unknown sweeteners binding sites based on this model, even some ideal sweeteners are still unknown. </p>
+
  
<h4 class="title-h4">Methods</h4>
 
<p class="my-content-p">To make the signal input more accurate and reliable, we simulated the T1R2/T1R3 receptor's structure model through SWISS-MODEL. Meanwhile, according to Chemdraw 2D and Chemdraw 3D, we constructed some sweetners' model. And the docking process was performed by using Autodock Vina.</p>
 
  
<h4 class="title-h4">Results</h4>
+
 
<p class="my-content-p">We used homology modeling to obtain the structure of human sweet receptor T1R2/T1R3. According to the crystal protein structure of similar receptor in mice, we only simulated ligand-binding-domain of our receptor. </p>
+
<div class="cd-section" id="Single">
 +
<h3 class="title-h3">Single cell model</h3>
 +
<h4 class="title-h4">Purpose</h4>
 +
<p class="my-content-p">To simulate RFP intensity under different sweetness, we needed to set a model in a single cell firstly. By establishing this model, we can understand how does the sweetness signal transmit in the in yeast mating pheromone pathway[3], and know the details of each step of the signal transmit thorough which provides a help for us to regulate the signal, and for improving our bio-meter.</p>
 +
<h4 class="title-h4">Single cell model:</h4>
 +
<p class="my-content-p">In single cell model, we pay main attention on the signal transduction in pheromone pathway based on the work from Dubois G E[2]. And for simulating the signal transduction in mathematical way, we set some hypothesizes of this model:</p>
 +
<li class="my-content-li2">1. We assume that T1R2/T1R3 receptor does not have synergistic effect when sweeteners bind.</li>
 +
<li class="my-content-li2">2. We hypothesize that the binding number of sweetener likes pheromones receptor are consistent when it binds to T1R2/T1R3.</li>
 +
<li class="my-content-li2">3. We assume that the combination rate and the initial concentration of sweetener binding is the same as pheromone receptor.</li>
 +
<li class="my-content-li2">4. There is no influence between the cell growth and protein expression in a single cell.</li>
 +
<li class="my-content-li2">5. Only concern conservation relations of protein concentration in a single cell. The protein involving in the signal transduction is not considers its production or degradation. </li>
 +
<h4 class="title-h4">Method and discussion </h4>
 +
 
 
<div class="my-content-box">
 
<div class="my-content-box">
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/6/65/T--BIT-China--2017modeling_pic3.png" />
+
                <img class="formula50" src="https://static.igem.org/mediawiki/2017/b/b3/T--BIT-China--2017modeling_pic8.png" />
              <span>Fig. 3 The simulated structure of human sweetness receptors' ligand-binding domain (LBD)</span>
+
                <span>Fig 8. The schematic diagram of Sugar hunter signal pathway</span>
            </div>
+
        </div>
 +
<p class="my-content-p">We established the reaction kinetic equations between variable states of protein based on conservation relations law. Use ordinary differential equations (ODEs) to describe the signal (the different states of protein) variation. We remade the pheromone signaling transduction in yeast MAPK pathway being divided into four modules: T1R2/T1R3 receptor activation, G-protein cycle activation, the MAPK cascade, and expression of mRFP. (Fig 8.) </p>
 +
<p class="my-content-p">Next, we will introduce four parts in detail.  </p>
  
<p class="my-content-p">Then, taking advantage of software Chemdraw 2D and Chemdraw 3D, we established some natural or artificial sweeteners' structure.</p>
+
<p class="my-content-p">T1R2/T1R3 receptor activation part:</p>
  
 
<div class="my-content-box">
 
<div class="my-content-box">
<img class="formula50" src="https://static.igem.org/mediawiki/2017/5/50/T--BIT-China--2017modeling_pic4.png" />
+
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/a/ad/T--BIT-China--2017modeling_pic9.png" />
<span>Fig. 4 Three dimensional structure of some sweeteners</span>
+
              <span>Fig. 9 The conventional diagram of T1R2-T1R3 receptor activation reaction </span>
 
            </div>
 
            </div>
<p class="my-content-p">Docking process was carried out under Autodock Vina (Fig. 5-7).</p>
+
<div class="my-content-box">
 +
<p class="my-content-p">We divided this activation process of inducing signal into four states of T1R2-T1R3 as shown in Fig. 9. And ODEs are shown follow.</p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/6/67/T--BIT-China--2017modeling_pic22.png" alt="">
 +
</div>
 +
<div class="my-img-box">
 +
<span>(T1R2/3: the T1R2-T1R3 heterodimer)</span>
 +
</div>
 +
<p class="my-content-p">The parameters of this part are listed in the Table1.</p>
  
  
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 1.  The sweeteners added for detecting function of the system </caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                      <th>Unit</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                        <td>k<sub>1</sub></td>
 +
                        <td>Rate constant of sweetness bind on receptor</td>
 +
                        <td>0.0012</td>
 +
                        <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>k<sub>2</sub></td>
 +
                        <td>Rate constant of receptor is not activated</td>
 +
                        <td>0.6</td>
 +
                        <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>3</sub></td>
 +
                      <td>Rate constant of sweetness Unbind on receptor</td>
 +
                      <td>0.24</td>
 +
                      <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>4</sub></td>
 +
                    <td>Rate constant of receptor degradation</td>
 +
                    <td>0.024</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
  
<div class="my-img-box" style="align-items: flex-end; justify-content: space-around;">
+
 
<img style="width: 30%; height: 30%" src="https://static.igem.org/mediawiki/2017/7/7b/T--BIT-China--2017modeling_pic5.png" alt="">
+
 
<img style="width: 30%; height: 30%" src="https://static.igem.org/mediawiki/2017/5/54/T--BIT-China--2017modeling_pic6.png" alt="">
+
 
<img style="width: 25%; height: 25%" src="https://static.igem.org/mediawiki/2017/7/7c/T--BIT-China--2017modeling_pic7.png" alt="">
+
<p class="my-content-p">The output of the T1R2/T1R3 receptor activation part is showed. (Fig. 10)</p>
 +
 
 +
<div class="my-content-box">
 +
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/d/d4/T--BIT-China--2017modeling_pic10.png" />
 +
            <span>Fig. 10. The output signal, activated state of T1R2-T1R3 under different concentration ligand</span>
 +
        </div>
 +
<p class="my-content-p">As we can see, the receptor can sense different concentration of ligand and release correspond output.</p>
 +
 
 +
<h4 class="title-h4">G-protein cycle activation part:</h4>
 +
 
 +
<div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/8/80/T--BIT-China--2017modeling_pic11.png" />
 +
              <span>Fig. 11 The schematic diagram of G-protein cycle activation</span>
 +
          </div>
 +
<div class="my-content-box">
 +
<p class="my-content-p">After signal produced, the GDP is replaced by GTP in G [5]. Then the Gβγ subunits can be released from membrane to active the downstream protein. Here, we selected the Gβγ as the output of this part. And the reaction equations of this process are listed follow. </p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/0/0c/T--BIT-China--2017modeling_pic23.png" alt="">
 
</div>
 
</div>
<div class="my-img-box">
+
 
<span>Fig. 5. Docking result of different sweeteners </span>
+
 
<span>Fig. 6. Docking result of aspartame </span>
+
 
<span>Fig. 7. Docking result of stevioside </span>
+
 
 +
 
 +
<p class="my-content-p">The parameters of this part are listed in the Table2.</p>
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 2. The value of parameter in G-protein cycle activation part</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                      <th>Unit</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                        <td>k<sub>5</sub></td>
 +
                        <td>Rate constant of G<sub>αβγ</sub> dissociated</td>
 +
                        <td>0.0036</td>
 +
                        <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>k<sub>6</sub></td>
 +
                        <td>Rate constant of G<sub>αβγ</sub> Synthetized</td>
 +
                        <td>2000</td>
 +
                        <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>7</sub></td>
 +
                      <td>Rate constant of G<sub>βγ</sub> bind with Ste5</td>
 +
                      <td>0.1</td>
 +
                      <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>8</sub></td>
 +
                    <td>Rate constant of G<sub>βγ</sub> unbind with Ste5</td>
 +
                    <td>5</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 
 +
 
 +
 
 +
 
 +
<p class="my-content-p">The output of G-protein cycle activation part is shown. (Fig. 12)</p>
 +
 
 +
<div class="my-content-box">
 +
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/6/62/T--BIT-China--2017modeling_pic12.png" />
 +
            <span>Fig. 12. The output signal, Gβγ under different concentration ligand</span>
 +
          </div>
 +
<p class="my-content-p">The result is similar to the first part which means our system can conserve the signal precision.</p>
 +
 
 +
<h4 class="title-h4">The MAPK cascade part:</h4>
 +
 
 +
 
 +
<div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/c/c9/T--BIT-China--2017modeling_pic13.png" />
 +
              <span>Fig. 13 The schematic diagram of MAPK cascade reaction</span>
 +
        </div>
 +
 
 +
<div class="my-content-box">
 +
<p class="my-content-p">The all protein in this part belongs to kinase and the signal is transmitted through phosphorylation. Finally, Fus3, will activate the Ste12 which is the output of this part. And all reaction equations of this process are listed as follow.</p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/e/e4/T--BIT-China--2017modeling_pic24.png" alt="">
 
</div>
 
</div>
  
Line 46: Line 181:
  
  
 +
 +
<p class="my-content-p">The parameters of this part are listed in the Table 3.</p>
 +
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 3. The value of parameter in MAPK cascade part</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                      <th>Unit</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                      <td>k<sub>7</sub></td>
 +
                      <td>Rate constant of G<sub>βγ</sub> bind with Ste5</td>
 +
                      <td>0.1</td>
 +
                      <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>8</sub></td>
 +
                    <td>Rate constant of G<sub>βγ</sub> unbind with Ste5</td>
 +
                    <td>5</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>9</sub></td>
 +
                      <td>Rate constant of Ste11 Phosphorylated</td>
 +
                      <td>10</td>
 +
                      <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>10</sub></td>
 +
                    <td>Rate constant of Ste7 double Phosphorylated</td>
 +
                    <td>47</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>11</sub></td>
 +
                      <td>Rate constant of Fus3 double Phosphorylated</td>
 +
                      <td>345</td>
 +
                      <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>12</sub></td>
 +
                    <td>Rate constant of double Phosphorylated Fus3 dissociation.</td>
 +
                    <td>140</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>13</sub></td>
 +
                      <td>Rate constant of double Phosphorylated Fus3 synthesis.</td>
 +
                      <td>260</td>
 +
                      <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>14</sub></td>
 +
                    <td>Rate constant of Fus3 dephosphorylated</td>
 +
                    <td>50</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>15</sub></td>
 +
                      <td>Rate constant of double pp-Fus3 bind with Ste12</td>
 +
                      <td>18</td>
 +
                      <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>16</sub></td>
 +
                    <td>Rate constant of double pp-Fus3 unbind with Ste12</td>
 +
                    <td>10</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 +
 +
 +
 +
<p class="my-content-p">The output of MAPK cascade part is showed. (Fig. 14)</p>
 +
 +
    <div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/4/4e/T--BIT-China--2017modeling_pic14.png" />
 +
              <span>Fig. 14 The output signal, activated state of Ste12 under different concentration ligand</span>
 +
          </div>
 +
 +
<h4 class="title-h4">Expression of mRFP part:</h4>
 +
 +
<div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/2/26/T--BIT-China--2017modeling_pic15.png" />
 +
              <span>Fig. 15. The Gene expression reaction diagram</span>
 +
            </div>
 +
 +
<div class="my-content-box">
 +
<p class="my-content-p">As we mentioned, the activated Ste12 can initial the transcription of the P<sub>Fus</sub>. Due  the Ste12 can transmit the signal to the mRFP, so we selected the RFP intensity to be output. And the equations about this process are listed as follow.</p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/a/a5/T--BIT-China--2017modeling_pic25.png" alt="">
 +
</div>
 +
 +
 +
 +
 +
<p class="my-content-p">The parameters of this part are listed in the Table 4.</p>
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 4. The value of parameter in gene expression part</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                      <th>Unit</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                      <td>k<sub>17</sub></td>
 +
                      <td>Rate constant of RFP_mRNA Synthetize</td>
 +
  <td>0.382</td>
 +
                      <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>18</sub></td>
 +
                    <td>Rate constant of RFP_mRNA Degradation</td>
 +
<td>8.39</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>19</sub></td>
 +
                      <td>Rate constant of nascent RFP synthetize</td>
 +
<td>0.012</td>
 +
                      <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>20</sub></td>
 +
                    <td>Rate constant of mature RFP synthetize</td>
 +
<td>0.0012</td>
 +
                    <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>21</sub></td>
 +
                      <td>Rate constant of mature RFP degradation</td>
 +
<td>0.018</td>
 +
                      <td>min<sup>-1</sup></td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 +
 +
 +
 +
<h4 class="title-h4">Result </h4>
 +
<p class="my-content-p">After calculating, we got the initial model of the signal transduction in single cell. The result is shown as follow.</p>
 +
 +
<div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/0/0d/T--BIT-China--2017modeling_pic16.png" />
 +
              <span>Fig. 16. The output signal, RFP intensity under different concentration ligand</span>
 +
        </div>
 +
<p class="my-content-p">The result shows that the different concentration of ligand can result in different RFP intensity, which illustrates that the detect device (-mRFP-CYC1t) can reflect the signal strength as we expect. This result demonstrates that our system can work inside a single cell in theory.</p>
 +
</div>
 +
 +
 +
 +
<div class="cd-section" id="Yeast">
 +
<h3 class="title-h3">Yeast growth model</h3>
 +
<h4 class="title-h4">Purpose</h4>
 +
<p class="my-content-p">After build up the model of signal transduction in a single cell, we plan to combine with the growth situation, because in practical situation, measuring a single cell is so difficult and costly that nobody be pleasure to try it. So in this part, we hope to build up a simple model to describe the growth of our yeast cells and reflect the RFP-sweetness relationship in population level.  </p>
 +
<h4 class="title-h4">Method </h4>
 +
<h5 class="title-h5">Practical data measurement</h5>
 +
<p class="my-content-p">For more accurate prediction, we measured the fluorescence intensity of our engineered yeast in population level, which was knocked out gene sst2, far1 corresponding to our single model, by inducing by α pheromone. More detail of this part result is shown in the host engineered. There is only a RFP intensity curve showing in Fig. 17. </p>
 +
 +
<div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/0/03/T--BIT-China--2017modeling_pic17.png" />
 +
              <span>Fig. 17. The RFP intensity of Sugar hunter system in practical situation</span>
 +
        </div>
 +
 +
<h5 class="title-h5">Model for simulation </h5>
 +
<p class="my-content-p">We referred to the model sat by iGEM team Imperial College 2016. This model was to describe the growth condition of two kinds of cell with competition in a limit culture. </p>
 +
<p class="my-content-p">We remade some hypothesis to make this model fitting our system. </p>
 +
<li class="my-content-li2">1. The condition of cell is divided into two state, activated and non-activated, and there is no conversion between two states. Two states of cell will consume the nutrition respectively.</li>
 +
<li class="my-content-li2">2. Only the state of activation can combine with single cell model.</li>
 +
<li class="my-content-li2">3. The nutrition in culture is limited.</li>
 +
<li class="my-content-li2">4. The growth of each group cell shares the same growth situation.  </li>
 +
<div class="my-content-box">
 +
<p class="my-content-p">Then we set the ODEs as following:</p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/a/a7/T--BIT-China--2017modeling_pic26.png" alt="">
 +
</div>
 +
 +
 +
<p class="my-content-p">The parameters of this model are listed in the Table 5.</p>
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 5. The value of parameter in yeast growth part</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                      <th>Unit</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
<td>r<sub>1</sub></td>
 +
<td>Rate of non-active yeast growth</td>
 +
<td>1</td>
 +
                        <td></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>r<sub>2</sub></td>
 +
                    <td>Rate of active yeast growth</td>
 +
<td>2</td>
 +
                    <td></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>n<sub>1</sub></td>
 +
                        <td>Culture time for non-active yeast</td>
 +
<td>30</td>
 +
                        <td>Hour</td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>n<sub>2</sub></td>
 +
                    <td>Culture time for active yeast</td>
 +
<td>30</td>
 +
                    <td>Hour</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>s<sub>1</sub></td>
 +
                        <td>Rate constant of nutrition consumption for  non-active yeast</td>
 +
<td>0.45</td>
 +
                        <td></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>s<sub>2</sub></td>
 +
                        <td>Rate constant of nutrition consumption for  active yeast</td>
 +
<td>2</td>
 +
                        <td></td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 +
 +
<h4 class="title-h4">Result </h4>
 +
<p class="my-content-p">The result of yeast growth model is showed as follow. (Fig. 18)</p>
 +
 +
<div class="my-content-box">
 +
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/c/c8/T--BIT-China--2017modeling_pic18.png" />
 +
                <span>Fig. 18 The result of yeast cells growth model, the active cell.</span>
 +
        </div>
 +
<h4 class="title-h4">Discussion </h4>
 +
<p class="my-content-p">The tendency is similar to our practical state meaning that our model can simulate the yeast growth in some certain condition. In the frame of model, we can regard the active cells as the living cells with ability to make normal bio-process. </p>
 +
</div>
 +
 +
 +
 +
 +
<div class="cd-section" id="Combination">
 +
<h3 class="title-h3">Combination Model coupling single cell and yeast growth</h3>
 +
<p class="my-content-p">After finishing the model of single cell signal transduction and the yeast growth simulation, the next work was to combine two models together to simulate the RFP intensity in population level.</p>
 +
<p class="my-content-p">Based on two assumptions we had sat, we simply combined through multiplying the value of  and the value of. </p>
 +
 +
 +
<p class="my-content-p">And we modified some parameters to meet the experimental data.</p>
 +
<div class="my-content-box">
 +
<p class="my-content-p">The result of this combination model is showed follow.</p>
 +
<img class="formula2" style="margin-top: -50px; margin-bottom: -60px" src="https://static.igem.org/mediawiki/2017/8/82/T--BIT-China--2017modeling_pic27.png" alt="">
 +
</div>
 +
<div class="my-content-box">
 +
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/b/ba/T--BIT-China--2017modeling_pic19.png" />
 +
            <span>Fig. 19 The simulation result of RFP intensity in population level.</span>
 +
        </div>
 
<h4 class="title-h4">Discussion</h4>
 
<h4 class="title-h4">Discussion</h4>
<p class="my-content-p">According to the results, all common, representative sweet substances can bind to human T1R2/T1R3 receptors on ligand-binding Domain (LBD). That means there are a lot of sites in receptor can provide advantage of suitable binding. Although model is only a part of the whole receptor, this domain is the most important domain for binding. It proves that this receptor can "taste" the sweetness and our project has enormous potential to be used in a wide range of sweet material testing compared to E-Tong.</p>
+
<p class="my-content-p">Combining two models, we find that the RFP intensity is almost the same as base line (value is 0) at the beginning. And at about 15 hours, because the cells have entered stationary phase, distinguish in single cell level will reflect in population level. </p>
<p class="my-content-p">Our docking results estimated that ligand-binding domain (LBD) of human T1R2/T1R3 receptors could bind with almost all kinds of known sweeteners. It provided evidence that this receptor has an ability to "taste" the sweetness. Meanwhile, our results also helped us to speculate that the number of both binding-site and binding-molecule also might influence the sense of sweetness.</p>
+
<p class="my-content-p">As for the curve after 22 hours, the RFP intensity starts to decrease slowly in all ligand concentration. It may due to the death of cells.</p>
<p class="my-content-p">However, our model still needs optimization. We plan to enhance the docking model and the more professional direct would be supplied by it.</p>
+
<p class="my-content-p">We decided to select the RFP intensity at 22 hours as the final output value of sweetness signal based on our model. In order to avoid the cell growth impacts the RFP intensity, we selected this specific moment as the sampling time.</p>
 +
</div>
 +
 
 +
 
 +
 
 +
<div class="cd-section" id="SWEETENER">
 +
<h3 class="title-h3">SWEETENER MODEL</h3>
 +
 
 +
 
 +
 
 +
<h4 class="title-h4">Purpose</h4>
 +
<p class="my-content-p">We hoped to set a model modified from our mating pheromone transduction model to predict the RFP intensity of sweetener. Make a comparison between our simulation result and practical measurement results to illustrate that our system not only can work like people gustatory sensation system with universality but also is more accurate and less interference than people. </p>
 +
<h4 class="title-h4">Method </h4>
 +
<p class="my-content-p">Although we had finished the GPCR model, the combination rate between the sweetener and receptor had not been reported or measured yet. So we needed to measure this data from wet lab.</p>
 +
<p class="my-content-p">But because of the instability of our system, we only got a useful group of data. The more discussion is established in Project website. The result was showed. (Table 6.) Then we utilized this group values to correct our pheromone model</p>
 
   
 
   
<p class="my-content-p">At the same time, we also find the situation of different sweeteners combination is different, for example the binding number, binding concentration and so on, which demonstrates people for the perception of sweet substances not only depends on the sweetness of the sweetener, but also on the concentration and the number of binding. In the future, it can provide the guidance for us to develop sweetness standards.</p>
+
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 6. The result of sweetness measurement using Sugar Hunter at 16 hours</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th style="width: 50%">Group Name</th>
 +
                      <th>RFP intensity/ unit</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
<td>2%  Sucrose</td>
 +
<td>42.5</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>0%  Sucrose (Control)</td>
 +
<td>27.5</td>
 +
                    </tr>
 +
                 
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<p class="my-content-p">Analysis the previous method of sweetness measurement, we made two assumptions for this sweetness model:</p>
 +
<li class="my-content-li2">1. Sweetness of all sweeteners can be transformed into the different concentration of standard sucrose (10% dissolving in water) with the same sweetness.</li>
 +
<li class="my-content-li2">2. The bind between different ligands and GPCR will not impact signal transduction in pheromone pathway.</li>
 +
 
 +
<p class="my-content-p">Based on these, the most significant work is to find out the RFP intensity corresponding to the standard sucrose.</p>
 +
<p class="my-content-p">Combining the wet experiment data, we made a simple calculation and got the RFP intensity of standard sweetness amounting to the fluorescence intensity induced by 750nM ideal ligand in our model.</p>
 +
 
 +
<div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/9/9c/T--BIT-China--2017modeling_pic20.png" />
 +
              <span>Fig. 20.  The relation between sweetness and idea ligand in model </span>
 +
        </div>
 +
<div class="my-content-box">
 +
<p class="my-content-p">We sat a correction factor  on calculation result. Then we rewrote the input according to follow equation. </p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/d/da/T--BIT-China--2017modeling_pic28.png" alt="">
 +
</div>
 +
<p class="my-content-p">Then we wanted to predict different sweetness of sweetener. The sweetness data is obtained from previous study. (Table 7.) </p>
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 7. The sweetness of sweetener measured by people taste</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th style="width: 50%">Sweetener</th>
 +
                      <th>Sweetness</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
<td>Sucrose</td>
 +
<td>1</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Aspartame</td>
 +
<td>200</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Stevioside</td>
 +
<td>150</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Sucralose</td>
 +
<td>600</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Glycyrrhizic acid</td>
 +
<td>170</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Acesulfame</td>
 +
<td>200</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Cyclamate</td>
 +
<td>30</td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 
 +
 
 +
 
 +
 +
 +
 +
 +
 +
 +
 +
 
 +
<h4 class="title-h4">Result </h4>
 +
<p class="my-content-p">The result of predicted RFP intensity of sweeteners is showed in Fig. 21.</p>
 +
<div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/b/b9/T--BIT-China--2017modeling_pic21.png" />
 +
              <span>Fig. 21.  The predicted RFP intensity of sweeteners with different sweetness calculated by corrected model</span>
 +
            </div>
  
<p class="my-content-p">But our model needs to be improved, in the future, we will use molecular dynamics modeling (molecular docking) and other methods to modify the sweet receptor model utilizing software Gauss View through the Gaussian force field and other mechanical system. The appropriate deformation of the small molecular material is also going to be simulated for making docking results be closer to the real situation.</p>
+
<h4 class="title-h4">Discussion </h4>
 +
<p class="my-content-p">When the detect time arrive at 22 hours, the peak of all curve is displayed as the pheromone model. And the different sweetness also can induce different RFP expression level. But this model needs to be modified further, because we only corrected model based on a group wet lab data, which is not enough for a model especial a model of bio-system actually.</p>
 +
<p class="my-content-p">What is more? A apart from keeping measuring the RFP intensity under different sweetness to correct model, we have considered some further work about improving this model in the future. </p>
 +
<li class="my-content-li2">(1) Through structure information discovery to find the combination constant of sweetener binding process.</li>
 +
<li class="my-content-li2">(2) The correct factor is to be considered the molecular weight, binding sites and combination numbers of the sweetener.</li>
 +
<li class="my-content-li2">(3) Combine the protein expression and cells growth together. Consider the impact between two modules. </li>
 
</div>
 
</div>
  
 +
 +
 +
<div class="cd-section" id="SUMMARY">
 +
<h3 class="title-h3">SUMMARY</h3>
 +
<p class="my-content-p">With our models, we successfully get the results as follows:</p>
 +
<li class="my-content-li2">1. We simulated the receptor structure model of T1R2/T1R3 and allowed it to bind to the sweetener to view the combining situation of different sweeteners through molecular docking. </li>
 +
<li class="my-content-li2">2. We have constructed the signal transduction model in mating pheromone response pathway in two different levels and proved that our system can work as we expectation. </li>
 +
<li class="my-content-li2">3. We also provide an ideal relationship between RFP intensity and sweetness based on the wet lab data and our signal transduction model simulation, which also demonstrates that our system can detect different sweetness in a appropriate sweetness range. </li>
 +
<li class="my-content-li2">4. Give some advice for other iGEMers about future model of our sweetness bio- meter, Sugar Hunter.</li>
 +
 +
<p class="my-content-p">To make a long story short, the sweeteners vary so much, but we always can taste all kinds of sweeteners and sense different sweetness because we have powerful sweetness receptors, T1R2/T1R3. Based on the pheromone signal transduction model, we successfully proves that using sweetness receptor as a "meter" and coupling the mating signal pathway to determine the sweetness in yeast cell is a feasible design. </p>
 +
<p class="my-content-p">Last, let’s set foot on the trip of beating sweet-monsters in parallel space with our Sugar Hunter!!!</p>
 +
 +
 +
 +
<h4 class="title-h4">References</h4>
 +
<li class="my-content-li2">1. Dubois G E. Molecular mechanism of sweetness sensation.[J]. Physiology & Behavior, 2016, 164(Pt B):453.</li>
 +
<li class="my-content-li2">2. Kofahl B, Klipp E. Modelling the dynamics of the yeast pheromone pathway.[J]. Yeast, 2004, 21(10):831.</li>
 +
<li class="my-content-li2">3. Richardson, Kathryn. Mechanisms of GPCR signal regulation in fission yeast[J]. University of Warwick, 2014.</li>
 +
<li class="my-content-li2">4. Nie Y, Vigues S, Hobbs J R, et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli.[J]. Current Biology Cb, 2005, 15(21):1948-52.</li>
 +
<li class="my-content-li2">5. Audet M, Bouvier M. Restructuring G-Protein- Coupled Receptor Activation [J]. Cell, 2012, 151(1):14-23.</li>
 +
</div>
 
<div class="article-nav">
 
<div class="article-nav">
<a href="https://2017.igem.org/Team:BIT-China/Model" class="article-nav-left">
+
<a href="https://2017.igem.org/Team:BIT-China/Model/Docking" class="article-nav-left2">
<img class="article-caption" src="https://static.igem.org/mediawiki/2017/a/a4/T--BIT-China--2017previous.png" alt="">
+
<img class="article-caption" src="https://static.igem.org/mediawiki/2017/a/a4/T--BIT-China--2017previous.png" alt="">
</a>
+
<a href="https://2017.igem.org/Team:BIT-China/Model/GPCRpathway" class="article-nav-right">
+
<img class="article-caption"  src="https://static.igem.org/mediawiki/2017/6/6f/T--BIT-China--2017next.png" alt="">
+
 
</a>
 
</a>
 
</div>
 
</div>
 
</section>
 
</section>
<a class="my-backTop" href="#mytop">
+
 
      <span>TOP</span>
+
 
      <img src="https://static.igem.org/mediawiki/2017/f/fd/Bit-china-2017backTop.png" alt="">  
+
<nav id="cd-vertical-nav">
    </a>
+
<ul>
</body>
+
<li>
</html>
+
<a href="#Single" data-number="1">
{{BIT-China/footer}}
+
<span class="cd-dot"></span>
 +
<span class="cd-label">Single cell model</span>
 +
</a>
 +
</li>
 +
 
 +
<li>
 +
<a href="#Yeast" data-number="2">
 +
<span class="cd-dot"></span>
 +
<span class="cd-label">Yeast growth model</span>
 +
</a>
 +
</li>
 +
<li>
 +
<a href="#Combination" data-number="3">
 +
<span class="cd-dot"></span>
 +
<span class="cd-label">Combination Model coupling single cell and yeast growth</span>
 +
</a>
 +
</li>
 +
 
 +
<li>
 +
<a href="#SWEETENER" data-number="4">
 +
<span class="cd-dot"></span>
 +
<span class="cd-label">SWEETENER MODEL</span>
 +
</a>
 +
</li>
 +
 
 +
<li>
 +
<a href="#SUMMARY" data-number="5">
 +
<span class="cd-dot"></span>
 +
<span class="cd-label">SUMMARY</span>
 +
</a>
 +
</li>
 +
</ul>
 +
</nav>
 +
 
 +
<a class="my-backTop" href="#mytop">
 +
      <span>TOP</span>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/fd/Bit-china-2017backTop.png" alt="">  
 +
    </a>
 +
</body>
 +
</html>
 +
{{BIT-China/footer}}

Revision as of 14:11, 27 October 2017

{BIT-China}}

Mating pheromone pathway model

We expected to use RFP intensity to predict the sweetness based on our system. So we needed an insight into relationship between RFP and sweetness. But lots of factor can impact the signal output so that we decided to divide our system into two parts, single cell model and yeast growth model.

Single cell model

Purpose

To simulate RFP intensity under different sweetness, we needed to set a model in a single cell firstly. By establishing this model, we can understand how does the sweetness signal transmit in the in yeast mating pheromone pathway[3], and know the details of each step of the signal transmit thorough which provides a help for us to regulate the signal, and for improving our bio-meter.

Single cell model:

In single cell model, we pay main attention on the signal transduction in pheromone pathway based on the work from Dubois G E[2]. And for simulating the signal transduction in mathematical way, we set some hypothesizes of this model:

  • 1. We assume that T1R2/T1R3 receptor does not have synergistic effect when sweeteners bind.
  • 2. We hypothesize that the binding number of sweetener likes pheromones receptor are consistent when it binds to T1R2/T1R3.
  • 3. We assume that the combination rate and the initial concentration of sweetener binding is the same as pheromone receptor.
  • 4. There is no influence between the cell growth and protein expression in a single cell.
  • 5. Only concern conservation relations of protein concentration in a single cell. The protein involving in the signal transduction is not considers its production or degradation.
  • Method and discussion

    Fig 8. The schematic diagram of Sugar hunter signal pathway

    We established the reaction kinetic equations between variable states of protein based on conservation relations law. Use ordinary differential equations (ODEs) to describe the signal (the different states of protein) variation. We remade the pheromone signaling transduction in yeast MAPK pathway being divided into four modules: T1R2/T1R3 receptor activation, G-protein cycle activation, the MAPK cascade, and expression of mRFP. (Fig 8.)

    Next, we will introduce four parts in detail.

    T1R2/T1R3 receptor activation part:

    Fig. 9 The conventional diagram of T1R2-T1R3 receptor activation reaction

    We divided this activation process of inducing signal into four states of T1R2-T1R3 as shown in Fig. 9. And ODEs are shown follow.

    (T1R2/3: the T1R2-T1R3 heterodimer)

    The parameters of this part are listed in the Table1.

    Table 1. The sweeteners added for detecting function of the system
    Parameter Description Value Unit
    k1 Rate constant of sweetness bind on receptor 0.0012 min-1nM-1
    k2 Rate constant of receptor is not activated 0.6 min-1
    k3 Rate constant of sweetness Unbind on receptor 0.24 min-1
    k4 Rate constant of receptor degradation 0.024 min-1

    The output of the T1R2/T1R3 receptor activation part is showed. (Fig. 10)

    Fig. 10. The output signal, activated state of T1R2-T1R3 under different concentration ligand

    As we can see, the receptor can sense different concentration of ligand and release correspond output.

    G-protein cycle activation part:

    Fig. 11 The schematic diagram of G-protein cycle activation

    After signal produced, the GDP is replaced by GTP in G [5]. Then the Gβγ subunits can be released from membrane to active the downstream protein. Here, we selected the Gβγ as the output of this part. And the reaction equations of this process are listed follow.

    The parameters of this part are listed in the Table2.

    Table 2. The value of parameter in G-protein cycle activation part
    Parameter Description Value Unit
    k5 Rate constant of Gαβγ dissociated 0.0036 min-1nM-1
    k6 Rate constant of Gαβγ Synthetized 2000 min-1nM-1
    k7 Rate constant of Gβγ bind with Ste5 0.1 min-1nM-1
    k8 Rate constant of Gβγ unbind with Ste5 5 min-1

    The output of G-protein cycle activation part is shown. (Fig. 12)

    Fig. 12. The output signal, Gβγ under different concentration ligand

    The result is similar to the first part which means our system can conserve the signal precision.

    The MAPK cascade part:

    Fig. 13 The schematic diagram of MAPK cascade reaction

    The all protein in this part belongs to kinase and the signal is transmitted through phosphorylation. Finally, Fus3, will activate the Ste12 which is the output of this part. And all reaction equations of this process are listed as follow.

    The parameters of this part are listed in the Table 3.

    Table 3. The value of parameter in MAPK cascade part
    Parameter Description Value Unit
    k7 Rate constant of Gβγ bind with Ste5 0.1 min-1nM-1
    k8 Rate constant of Gβγ unbind with Ste5 5 min-1
    k9 Rate constant of Ste11 Phosphorylated 10 min-1
    k10 Rate constant of Ste7 double Phosphorylated 47 min-1
    k11 Rate constant of Fus3 double Phosphorylated 345 min-1
    k12 Rate constant of double Phosphorylated Fus3 dissociation. 140 min-1
    k13 Rate constant of double Phosphorylated Fus3 synthesis. 260 min-1
    k14 Rate constant of Fus3 dephosphorylated 50 min-1
    k15 Rate constant of double pp-Fus3 bind with Ste12 18 min-1
    k16 Rate constant of double pp-Fus3 unbind with Ste12 10 min-1

    The output of MAPK cascade part is showed. (Fig. 14)

    Fig. 14 The output signal, activated state of Ste12 under different concentration ligand

    Expression of mRFP part:

    Fig. 15. The Gene expression reaction diagram

    As we mentioned, the activated Ste12 can initial the transcription of the PFus. Due the Ste12 can transmit the signal to the mRFP, so we selected the RFP intensity to be output. And the equations about this process are listed as follow.

    The parameters of this part are listed in the Table 4.

    Table 4. The value of parameter in gene expression part
    Parameter Description Value Unit
    k17 Rate constant of RFP_mRNA Synthetize 0.382 min-1nM-1
    k18 Rate constant of RFP_mRNA Degradation 8.39 min-1
    k19 Rate constant of nascent RFP synthetize 0.012 min-1
    k20 Rate constant of mature RFP synthetize 0.0012 min-1
    k21 Rate constant of mature RFP degradation 0.018 min-1

    Result

    After calculating, we got the initial model of the signal transduction in single cell. The result is shown as follow.

    Fig. 16. The output signal, RFP intensity under different concentration ligand

    The result shows that the different concentration of ligand can result in different RFP intensity, which illustrates that the detect device (-mRFP-CYC1t) can reflect the signal strength as we expect. This result demonstrates that our system can work inside a single cell in theory.

    Yeast growth model

    Purpose

    After build up the model of signal transduction in a single cell, we plan to combine with the growth situation, because in practical situation, measuring a single cell is so difficult and costly that nobody be pleasure to try it. So in this part, we hope to build up a simple model to describe the growth of our yeast cells and reflect the RFP-sweetness relationship in population level.

    Method

    Practical data measurement

    For more accurate prediction, we measured the fluorescence intensity of our engineered yeast in population level, which was knocked out gene sst2, far1 corresponding to our single model, by inducing by α pheromone. More detail of this part result is shown in the host engineered. There is only a RFP intensity curve showing in Fig. 17.

    Fig. 17. The RFP intensity of Sugar hunter system in practical situation
    Model for simulation

    We referred to the model sat by iGEM team Imperial College 2016. This model was to describe the growth condition of two kinds of cell with competition in a limit culture.

    We remade some hypothesis to make this model fitting our system.

  • 1. The condition of cell is divided into two state, activated and non-activated, and there is no conversion between two states. Two states of cell will consume the nutrition respectively.
  • 2. Only the state of activation can combine with single cell model.
  • 3. The nutrition in culture is limited.
  • 4. The growth of each group cell shares the same growth situation.
  • Then we set the ODEs as following:

    The parameters of this model are listed in the Table 5.

    Table 5. The value of parameter in yeast growth part
    Parameter Description Value Unit
    r1 Rate of non-active yeast growth 1
    r2 Rate of active yeast growth 2
    n1 Culture time for non-active yeast 30 Hour
    n2 Culture time for active yeast 30 Hour
    s1 Rate constant of nutrition consumption for non-active yeast 0.45
    s2 Rate constant of nutrition consumption for active yeast 2

    Result

    The result of yeast growth model is showed as follow. (Fig. 18)

    Fig. 18 The result of yeast cells growth model, the active cell.

    Discussion

    The tendency is similar to our practical state meaning that our model can simulate the yeast growth in some certain condition. In the frame of model, we can regard the active cells as the living cells with ability to make normal bio-process.

    Combination Model coupling single cell and yeast growth

    After finishing the model of single cell signal transduction and the yeast growth simulation, the next work was to combine two models together to simulate the RFP intensity in population level.

    Based on two assumptions we had sat, we simply combined through multiplying the value of and the value of.

    And we modified some parameters to meet the experimental data.

    The result of this combination model is showed follow.

    Fig. 19 The simulation result of RFP intensity in population level.

    Discussion

    Combining two models, we find that the RFP intensity is almost the same as base line (value is 0) at the beginning. And at about 15 hours, because the cells have entered stationary phase, distinguish in single cell level will reflect in population level.

    As for the curve after 22 hours, the RFP intensity starts to decrease slowly in all ligand concentration. It may due to the death of cells.

    We decided to select the RFP intensity at 22 hours as the final output value of sweetness signal based on our model. In order to avoid the cell growth impacts the RFP intensity, we selected this specific moment as the sampling time.

    SWEETENER MODEL

    Purpose

    We hoped to set a model modified from our mating pheromone transduction model to predict the RFP intensity of sweetener. Make a comparison between our simulation result and practical measurement results to illustrate that our system not only can work like people gustatory sensation system with universality but also is more accurate and less interference than people.

    Method

    Although we had finished the GPCR model, the combination rate between the sweetener and receptor had not been reported or measured yet. So we needed to measure this data from wet lab.

    But because of the instability of our system, we only got a useful group of data. The more discussion is established in Project website. The result was showed. (Table 6.) Then we utilized this group values to correct our pheromone model

    Table 6. The result of sweetness measurement using Sugar Hunter at 16 hours
    Group Name RFP intensity/ unit
    2% Sucrose 42.5
    0% Sucrose (Control) 27.5

    Analysis the previous method of sweetness measurement, we made two assumptions for this sweetness model:

  • 1. Sweetness of all sweeteners can be transformed into the different concentration of standard sucrose (10% dissolving in water) with the same sweetness.
  • 2. The bind between different ligands and GPCR will not impact signal transduction in pheromone pathway.
  • Based on these, the most significant work is to find out the RFP intensity corresponding to the standard sucrose.

    Combining the wet experiment data, we made a simple calculation and got the RFP intensity of standard sweetness amounting to the fluorescence intensity induced by 750nM ideal ligand in our model.

    Fig. 20. The relation between sweetness and idea ligand in model

    We sat a correction factor on calculation result. Then we rewrote the input according to follow equation.

    Then we wanted to predict different sweetness of sweetener. The sweetness data is obtained from previous study. (Table 7.)

    Table 7. The sweetness of sweetener measured by people taste
    Sweetener Sweetness
    Sucrose 1
    Aspartame 200
    Stevioside 150
    Sucralose 600
    Glycyrrhizic acid 170
    Acesulfame 200
    Cyclamate 30

    Result

    The result of predicted RFP intensity of sweeteners is showed in Fig. 21.

    Fig. 21. The predicted RFP intensity of sweeteners with different sweetness calculated by corrected model

    Discussion

    When the detect time arrive at 22 hours, the peak of all curve is displayed as the pheromone model. And the different sweetness also can induce different RFP expression level. But this model needs to be modified further, because we only corrected model based on a group wet lab data, which is not enough for a model especial a model of bio-system actually.

    What is more? A apart from keeping measuring the RFP intensity under different sweetness to correct model, we have considered some further work about improving this model in the future.

  • (1) Through structure information discovery to find the combination constant of sweetener binding process.
  • (2) The correct factor is to be considered the molecular weight, binding sites and combination numbers of the sweetener.
  • (3) Combine the protein expression and cells growth together. Consider the impact between two modules.
  • SUMMARY

    With our models, we successfully get the results as follows:

  • 1. We simulated the receptor structure model of T1R2/T1R3 and allowed it to bind to the sweetener to view the combining situation of different sweeteners through molecular docking.
  • 2. We have constructed the signal transduction model in mating pheromone response pathway in two different levels and proved that our system can work as we expectation.
  • 3. We also provide an ideal relationship between RFP intensity and sweetness based on the wet lab data and our signal transduction model simulation, which also demonstrates that our system can detect different sweetness in a appropriate sweetness range.
  • 4. Give some advice for other iGEMers about future model of our sweetness bio- meter, Sugar Hunter.
  • To make a long story short, the sweeteners vary so much, but we always can taste all kinds of sweeteners and sense different sweetness because we have powerful sweetness receptors, T1R2/T1R3. Based on the pheromone signal transduction model, we successfully proves that using sweetness receptor as a "meter" and coupling the mating signal pathway to determine the sweetness in yeast cell is a feasible design.

    Last, let’s set foot on the trip of beating sweet-monsters in parallel space with our Sugar Hunter!!!

    References

  • 1. Dubois G E. Molecular mechanism of sweetness sensation.[J]. Physiology & Behavior, 2016, 164(Pt B):453.
  • 2. Kofahl B, Klipp E. Modelling the dynamics of the yeast pheromone pathway.[J]. Yeast, 2004, 21(10):831.
  • 3. Richardson, Kathryn. Mechanisms of GPCR signal regulation in fission yeast[J]. University of Warwick, 2014.
  • 4. Nie Y, Vigues S, Hobbs J R, et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli.[J]. Current Biology Cb, 2005, 15(21):1948-52.
  • 5. Audet M, Bouvier M. Restructuring G-Protein- Coupled Receptor Activation [J]. Cell, 2012, 151(1):14-23.
  • TOP