Difference between revisions of "Team:Newcastle/Results"

Line 111: Line 111:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
           <p>Sarcosine Oxidase (SOX) is an enzyme that oxidatively demethylates sarcosine to form glycine, hydrogen peroxide and formaldehyde (Trickey et al. 1999). SOX was selected to be an example of a possible solution to one of the 5 problems in biosensor production that we identified - unconventional substrates. We defined an unconventional substrate as a substrate that we have little prior knowledge of but that can be adapted into something with an existing biosensor. SOX was specifically chosen to demonstrate that glyphosate, an unconventional substrate which there is not a lot information on, can be converted into formaldehyde which there are existing biosensors for (Ling and Heng 2010).  
+
           <p>Sarcosine Oxidase (SOX) is an enzyme that oxidatively demethylates sarcosine to form glycine, hydrogen peroxide and formaldehyde (Figure 1) (Trickey et al. 1999). SOX was selected to be an example of a possible solution to one of the 5 problems in biosensor production that we identified - unconventional substrates. We defined an unconventional substrate as a substrate that we have little prior knowledge of but that can be adapted into something with an existing biosensor. SOX was specifically chosen to demonstrate that glyphosate, an unconventional substrate which there is not a lot information on, can be converted into formaldehyde which there are existing biosensors for (Ling and Heng 2010).  
 
           </br></br>
 
           </br></br>
 
           As part of our project, SOX was designed to be an ‘adapter’ that could link glyphosate into our framework via a formaldehyde detector module. This concept could then be applied to other molecules that have easily detectable substrates in their degradation pathways. The aim of this part of the project was to demonstrate that SOX can be expressed by E. coli cells and that when glyphosate is added SOX can convert it to formaldehyde to be detected via a biosensor.
 
           As part of our project, SOX was designed to be an ‘adapter’ that could link glyphosate into our framework via a formaldehyde detector module. This concept could then be applied to other molecules that have easily detectable substrates in their degradation pathways. The aim of this part of the project was to demonstrate that SOX can be expressed by E. coli cells and that when glyphosate is added SOX can convert it to formaldehyde to be detected via a biosensor.
 +
<div class="result_img SOX"><img class="result_img" src="https://static.igem.org/mediawiki/2017/d/d9/T--Newcastle--glyphosate_pathway.png" width="100%"/>
 +
<br />
 +
<p class="legend"><strong>Figure 1:</strong> Biochemical pathway of the degradation of glyphosate to glycine and formaldehyde.</p>
 +
</div>
 
           </p>
 
           </p>
  

Revision as of 20:28, 27 October 2017

spacefill

Our Experimental Results

Image will go here