Line 114: | Line 114: | ||
<td> | <td> | ||
<p> | <p> | ||
− | At the beginning of iGEM, we created a <a href="https://static.igem.org/mediawiki/2017/2/27/T--Newcastle--BB_collab_flyer.png">flyer</a> showcasing the strengths of our team and the various ways we could help other teams. As a result of this, we were contacted by three teams: Edinburgh overgraduate team, Exeter, and Evry Paris-Saclay. | + | At the beginning of iGEM, we created a <a href="https://static.igem.org/mediawiki/2017/2/27/T--Newcastle--BB_collab_flyer.png">flyer</a> showcasing the strengths of our team and the various ways we could help other teams. As a result of this, we were contacted by three teams: <a href="https://2017.igem.org/Team:Edinburgh_OG/Collaborations">Edinburgh overgraduate team</a>, <a href="https://2017.igem.org/Team:Exeter/Collaborations">Exeter</a>, and <a href="https://2017.igem.org/Team:Evry_Paris-Saclay/Collaborations#about">Evry Paris-Saclay</a>. |
− | For the Edinburgh team, we used our modelling knowledge to help fix their model. We aided the Exeter team by repeating one of their experiments, and they gathered single-cell fluorescence data for our deGFP construct using their FACS machine. Finally, Paris designed a novel psicose-regulated promoter to be used in a biosensor. We then incorporated their promoter into our framework so that many different variants of a psicose biosensor could be designed, made and tested. | + | For the Edinburgh team, we used our modelling knowledge to help fix their model. We aided the Exeter team by repeating one of their experiments, and they gathered single-cell fluorescence data for our deGFP construct using their FACS machine. Finally, Paris designed a novel psicose-regulated promoter to be used in a biosensor. We then incorporated their promoter into our framework so that many different variants of a psicose biosensor could be designed, made and tested.<br /> |
+ | <br /> | ||
+ | <a href="https://2017.igem.org/Team:Newcastle/Collaborations">Check out our collaboration page for more information</a> | ||
</p> | </p> | ||
</td> | </td> |
Revision as of 16:55, 28 October 2017
Medal |
Criteria |
Explanation |
---|---|---|
Bronze | All must be met | |
1 | Register and Attend – Register for iGEM and attend the Giant Jamboree. | Newcastle iGEM team has registered and will be attending the Giant Jamboree in Boston. |
2 | Deliverables – Meet all the deliverables on the Competition Deliverables page | A team wiki, poster, presentation and project attributions were made. The safety form, judging form and registry pages were completed. |
3 | Attribution – Create a page on your team wiki with clear attribution of each aspect of your project. | Our Attributions page is here. |
4 | Characterise/Contribution – Participate in the Interlab Measurement Study and/or improve the characterisation of an existing BioBrick Part or Device and enter this information on that part's Main Page in the Registry. | Our team participated in the Interlab Measurement Study. |
Silver | All must be met | |
1 | Validated Part/Validated Contribution – Convince the judges that at least one new BioBrick Part of your own design that is central to your project works as expected. |
|
2 | Collaboration – Convince the judges you have significantly worked with another registered iGEM team in a meaningful way. |
At the beginning of iGEM, we created a flyer showcasing the strengths of our team and the various ways we could help other teams. As a result of this, we were contacted by three teams: Edinburgh overgraduate team, Exeter, and Evry Paris-Saclay.
For the Edinburgh team, we used our modelling knowledge to help fix their model. We aided the Exeter team by repeating one of their experiments, and they gathered single-cell fluorescence data for our deGFP construct using their FACS machine. Finally, Paris designed a novel psicose-regulated promoter to be used in a biosensor. We then incorporated their promoter into our framework so that many different variants of a psicose biosensor could be designed, made and tested. |
3 | Human Practices – Convince the judges you have thought carefully and creatively about whether your work is safe, responsible and good for the world. | Link. |
Gold | At least 2 must be met | |
1 | Integrated Human Practices – Expand on your silver medal activity by demonstrating how you have integrated the investigated issues into the design and/or execution of your project. | Link. |
2 | Improve a previous part or project – Improve the function of an existing BioBrick Part or existing iGEM project and display your achievement on your wiki. |
BBa_K2205026 - pSB1A51 (Promoter Library Screening Plasmid) - Improvement over BBa_J61002
BBa_K2205005 - Fim Standby Switch - Improvement over BBa_K1632007
|
3 | Model your project – Convince the judges your project's design and/or implementation is based on insight you have gained from modelling. | We have modelled various aspects of our project, creating Simbiotics and COPASI models of the sensor development platform and a Design of Experiments model to optimise the cell free systems in our project. Details can be found here. |
4 | Demonstrate your work – Convince the judges that your project works. | We have produced a functional multicellular biosensor based on bacterial quorum sensing. Each part has been tested and characterised singularly. The co-culture of the 3 bacterial types are proved to form a working biosensing device. More details can be found here. |