Difference between revisions of "Team:Calgary/Description"

Line 28: Line 28:
  
 
<p>This overall process is summarized below. Find more information on our <a href="https://2017.igem.org/Team:Calgary/Process">Process Development</a> page!</p><br>
 
<p>This overall process is summarized below. Find more information on our <a href="https://2017.igem.org/Team:Calgary/Process">Process Development</a> page!</p><br>
 +
 +
<script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/latest/plugins/CSSPlugin.min.js"></script>
 +
<script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/1.20.2/TweenMax.min.js"> </script>
 +
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.1.1/jquery.min.js"> </script>
 +
<script src ="https://s3-us-west-2.amazonaws.com/s.cdpn.io/16327/MorphSVGPlugin.min.js"> </script>
 +
<script type ="text/javascript">
 +
$( document ).ready(function() {
 +
  console.clear();
 +
  TweenMax.set("#circle1", {xPercent:-50, yPercent:-50});
 +
  var pathArcLeft = MorphSVGPlugin.pathDataToBezier("#motionPath", {align:"#circle1"});
 +
  TweenMax.to("#circle1", 3, {bezier:{values:pathArcLeft, type:"cubic"}, repeat:-1, yoyo:false});
 +
  TweenMax.set("#circle2", {xPercent:-50, yPercent:-40});
 +
  var pathArcLeft = MorphSVGPlugin.pathDataToBezier("#motionPath", {align:"#circle2"});
 +
  TweenMax.to("#circle2", 5, {bezier:{values:pathArcLeft, type:"cubic"}, repeat:-1, yoyo:false});
 +
  TweenMax.set("#sep_circle", {xPercent:-50, yPercent:-40});
 +
  var pathArcLeft = MorphSVGPlugin.pathDataToBezier("#sep_path", {align:"#sep_circle"});
 +
  TweenMax.to("#sep_circle", 5, {bezier:{values:pathArcLeft, type:"cubic"}, repeat:-1, yoyo:false});
 +
  TweenMax.set("#sep_circle1", {xPercent:-50, yPercent:-40});
 +
  var pathArcLeft = MorphSVGPlugin.pathDataToBezier("#sep_path", {align:"#sep_circle1"});
 +
  TweenMax.to("#sep_circle1", 2, {bezier:{values:pathArcLeft, type:"cubic"}, repeat:-1, yoyo:false});
 +
  TweenMax.set("#sep_circle2", {xPercent:-50, yPercent:-40});
 +
  var pathArcLeft = MorphSVGPlugin.pathDataToBezier("#sep_path2", {align:"#sep_circle2"});
 +
  TweenMax.to("#sep_circle2", 6, {bezier:{values:pathArcLeft, type:"cubic"}, repeat:-1, yoyo:false});
 +
  TweenMax.set("#sep_circle3", {xPercent:-50, yPercent:-40});
 +
  var pathArcLeft = MorphSVGPlugin.pathDataToBezier("#sep_path2", {align:"#sep_circle3"});
 +
  TweenMax.to("#sep_circle3", 2, {bezier:{values:pathArcLeft, type:"cubic"}, repeat:-1, yoyo:false});
 +
  TweenMax.set("#plastic_cirlce1", {xPercent:-50, yPercent:-50});
 +
  var pathLeft = MorphSVGPlugin.pathDataToBezier("#plastic_path", {align:"#plastic_cirlce1"});
 +
  TweenMax.to("#plastic_cirlce1", 2, {bezier:{values:pathLeft, type:"cubic"}, repeat:-1, yoyo:false});
 +
 +
});
 +
</script>
 +
  
 
<script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/latest/plugins/CSSPlugin.min.js"></script>
 
<script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/latest/plugins/CSSPlugin.min.js"></script>
Line 71: Line 104:
 
   {
 
   {
 
           //Set all boxes to hide
 
           //Set all boxes to hide
           box = document.getElementById('Box1');
+
           box = document.getElementById('sep_box');
 
           box.style.display = 'none';
 
           box.style.display = 'none';
 
           box = document.getElementById('Box2');
 
           box = document.getElementById('Box2');
Line 80: Line 113:
 
           if (myID === 'Bacteria')
 
           if (myID === 'Bacteria')
 
           {
 
           {
   var x = document.getElementById('Box1');
+
   var x = document.getElementById('Box2');
 
           }
 
           }
 
           else if (myID === 'Separation')
 
           else if (myID === 'Separation')
 
           {
 
           {
               var x = document.getElementById('Box2');
+
               var x = document.getElementById('sep_box');
 
           }
 
           }
 
           else if(myID === 'Stirred-tank')
 
           else if(myID === 'Stirred-tank')
Line 223: Line 256:
 
     }
 
     }
 
   </style>
 
   </style>
 +
  <style>
 +
  .myText{fill:#83859e;stroke:#d24f2b;stroke-miterlimit:10;stroke-width:8.46px;}
 +
 +
  </style>
 +
 +
  <script type="text/javascript">
 +
      function init(evt)
 +
      {
 +
          if ( window.svgDocument == null )
 +
          {
 +
              svgDocument = evt.target.ownerDocument;
 +
          }
 +
 +
          maximum_length = 400;
 +
          my_text = svgDocument.getElementById('text-to-resize');
 +
 +
          for (var font_size=15; font_size>0; font_size--)
 +
          {
 +
              if(my_text.getComputedTextLength() < maximum_length){break;}
 +
              my_text.setAttributeNS(null, "font-size", font_size);
 +
          }
 +
      }
 +
    </script>
 +
 +
 
</defs>
 
</defs>
 
<title>ModelAnimationDesign6</title>
 
<title>ModelAnimationDesign6</title>
Line 707: Line 765:
 
<rect class="cls-68" x="1099.51" y="1773.51" width="153.6" height="153.6" rx="6.4" ry="6.4"/>
 
<rect class="cls-68" x="1099.51" y="1773.51" width="153.6" height="153.6" rx="6.4" ry="6.4"/>
 
<path class="cls-68" d="M1246.4,1775.4a3.24,3.24,0,0,1,3.2,3.2v140.8a3.24,3.24,0,0,1-3.2,3.2H1105.6a3.24,3.24,0,0,1-3.2-3.2V1778.6a3.24,3.24,0,0,1,3.2-3.2h140.8m0-6.4H1105.6a9.63,9.63,0,0,0-9.6,9.6v140.8a9.63,9.63,0,0,0,9.6,9.6h140.8a9.63,9.63,0,0,0,9.6-9.6V1778.6a9.63,9.63,0,0,0-9.6-9.6Z" transform="translate(0.31 1.31)"/>
 
<path class="cls-68" d="M1246.4,1775.4a3.24,3.24,0,0,1,3.2,3.2v140.8a3.24,3.24,0,0,1-3.2,3.2H1105.6a3.24,3.24,0,0,1-3.2-3.2V1778.6a3.24,3.24,0,0,1,3.2-3.2h140.8m0-6.4H1105.6a9.63,9.63,0,0,0-9.6,9.6v140.8a9.63,9.63,0,0,0,9.6,9.6h140.8a9.63,9.63,0,0,0,9.6-9.6V1778.6a9.63,9.63,0,0,0-9.6-9.6Z" transform="translate(0.31 1.31)"/>
<text class="cls-69" transform="translate(1157.45 1855.13)">Finish</text>
+
<text class="cls-69" transform="translate(1157.45 1855.13)">Win</text>
 
<rect class="cls-23" x="1099.51" y="482.51" width="153.6" height="153.6" rx="6.4" ry="6.4"/>
 
<rect class="cls-23" x="1099.51" y="482.51" width="153.6" height="153.6" rx="6.4" ry="6.4"/>
 
<path class="cls-23" d="M1246.4,484.4a3.24,3.24,0,0,1,3.2,3.2V628.4a3.24,3.24,0,0,1-3.2,3.2H1105.6a3.24,3.24,0,0,1-3.2-3.2V487.6a3.24,3.24,0,0,1,3.2-3.2h140.8m0-6.4H1105.6a9.63,9.63,0,0,0-9.6,9.6V628.4a9.63,9.63,0,0,0,9.6,9.6h140.8a9.63,9.63,0,0,0,9.6-9.6V487.6a9.63,9.63,0,0,0-9.6-9.6Z" transform="translate(0.31 1.31)"/>
 
<path class="cls-23" d="M1246.4,484.4a3.24,3.24,0,0,1,3.2,3.2V628.4a3.24,3.24,0,0,1-3.2,3.2H1105.6a3.24,3.24,0,0,1-3.2-3.2V487.6a3.24,3.24,0,0,1,3.2-3.2h140.8m0-6.4H1105.6a9.63,9.63,0,0,0-9.6,9.6V628.4a9.63,9.63,0,0,0,9.6,9.6h140.8a9.63,9.63,0,0,0,9.6-9.6V487.6a9.63,9.63,0,0,0-9.6-9.6Z" transform="translate(0.31 1.31)"/>
Line 740: Line 798:
 
</g>
 
</g>
  
   <img id="Box1" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice"  src="https://static.igem.org/mediawiki/2017/7/7a/Textbox1.png">
+
   <g id="sep_box">
  <img id="Box2" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice"  src="https://static.igem.org/mediawiki/2017/a/a9/Textbox2.png">
+
      <rect class="myText top" id="rect1"  x="400" y="1600" width="600" height="350"/>
 +
    <text
 +
    text-anchor="middle"
 +
    x="700" y="1645" fill="#fff"
 +
    font-family="Times New Roman" font-size="20">
 +
    VFA fermentation is the first step of the process, where astronauts  </text>
 +
    <text
 +
      text-anchor="middle"
 +
      x="700" y="1675" fill="#fff"
 +
      font-family="Times New Roman" font-size="20">
 +
      feces are fermented for 3 days at 22 C with bacteria naturally found in </text>
 +
 
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1705" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
          human feces to increase the concentration of volatile fatty acids (VFAs)
 +
    </text>
 +
 
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1735" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    that are later consumed by engineered bacteria to produce PHB. Feces
 +
    </text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1765" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    are collected into into a storage tank using a vacuum toilet before being </text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1795" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    transferred into the VFA fermenter.</text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1825" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    In second stage, VFA-rich stream is obtained by separating solid </text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1855" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    particles using centrifugation followed by filtration.  The </text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1885" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
  VFA-rich stream is then passed on to a PHB fermenter.</text>
 +
  </g>
 +
 
 +
<!-- <img id="Box1" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice"  src="https://static.igem.org/mediawiki/2017/7/7a/Textbox1.png">-->
 +
<img id="Box2" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice"  src="https://static.igem.org/mediawiki/2017/a/a9/Textbox2.png">
 
   <img id="Box3" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice"  src="https://static.igem.org/mediawiki/2017/6/6e/Textbox3.png">
 
   <img id="Box3" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice"  src="https://static.igem.org/mediawiki/2017/6/6e/Textbox3.png">
  
  
 
</svg>
 
</svg>
 
  
  

Revision as of 08:42, 30 October 2017

Header

Our Project

The Problem

Governments and private enterprises alike are gearing up for travel across our Solar System. Plans to colonize nearby planets are underway, with Elon Musk spearheading the initiative to put a human colony on Mars by 2030. In a parallel vein, NASA is planning a manned exploratory mission to Mars as soon as the 2030s. Several other space agencies have similar plans and timelines for their own respective Mars explorations. This exciting time in our history nonetheless comes with the challenges of long-term space travel.

Two ecological and economical challenges arise:

  1. the sustainable management of waste produced in space, and
  2. the high cost of shipping materials to space.

Waste management on Mars will be paramount because manned missions will need to recover as much water and oxygen as possible to sustain life. Human waste must also be treated to minimize health risks for the crew of a Mars mission. All of this must be accomplished while preserving the natural Martian environment.

The current cost of shipping materials up to space is $10,000 USD per pound due to the high price of fuel (Hsu, 2011). This expense will limit early Mars mission crews in the supplies that they can bring or ship from Earth to Mars, and may not allow astronauts to account for every tool they may require during their mission. One way to mitigate this challenge is to develop a system to produce necessary items in space as needs arise.


Our Solution

Our team is working on a unique solution to both of the aforementioned challenges of future Mars missions: we intend to upcycle human waste by using it as a feedstock for E. coli engineered to produce bioplastic, which can then be 3-D printed into useful tools onsite.

Poly(3-hydroxybutyrate) (PHB), a bioplastic, is produced in nature by many bacterial species. Literature has shown that PHB can be produced using a variety of feedstocks, including glucose and volatile fatty acids (VFAs) (Albuquerque et al., 2011). Since human waste contains both glucose and VFAs, it is a potentially useful feedstock for PHB production.

Our team engineered E. coli to express PHB-producing genes, which we codon-optimized to increase the efficiency of PHB production. We then modified native E. coli secretion pathways so the cells would release the PHB they produced. This allows for a continuous PHB production and secretion process, as opposed to a traditional batch process, which is not user-friendly and requires more time and maintenance. Thus, when employed together these genetic modifications create a novel means of bioplastic production.

We also developed a start-to-finish process involving both waste management and PHB production. In the first step of this process, solid human waste is collected and fermented with naturally occurring enterogenic bacteria to increase the concentration of VFAs. As a part of this process, the solids from the waste settle and the liquid rises to the surface of the fermentation tank. Next, the VFA-concentrated liquid in the fermentation tank is separated from the solid particles by centrifugation, sterilized by filtration, and passed to a bioreactor containing with our engineered PHB-producing E. coli. Once the PHB is synthesized and secreted, it can be continuously collected and extracted from the liquid stream. The resulting liquid can be recycled into drinking water, while PHB particles can be used in a Selective Laser Sintering (SLS) 3-D printer to generate items useful to astronauts.

This overall process is summarized below. Find more information on our Process Development page!


ModelAnimationDesign6 ON BIOREACTOR STIRRED-TANK EXTRACTION SEPARATION Win Start VFA fermentation is the first step of the process, where astronauts feces are fermented for 3 days at 22 C with bacteria naturally found in human feces to increase the concentration of volatile fatty acids (VFAs) that are later consumed by engineered bacteria to produce PHB. Feces are collected into into a storage tank using a vacuum toilet before being transferred into the VFA fermenter. In second stage, VFA-rich stream is obtained by separating solid particles using centrifugation followed by filtration. The VFA-rich stream is then passed on to a PHB fermenter.

Works Cited

Albuquerque, M.G.E., Martino, V., Pollet, E., Avérous, L. & Reis, M.A.M. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol., 151(1): 66-76

Hsu., J. (2011). Total Cost of NASA's Space Shuttle Program: Nearly $200 Billion. Space.com (Magazine). Retrieved September 17, 2017, from https://www.space.com/11358-nasa-space-shuttle-program-cost-30-years.html