In this final equation, 'P' represents plant statistics. For our model, this is how many µU of antagonist one plant can produce. This is the variable that we made several substitutes to, to show that the model can be adjusted to suit new uses. Here, we tested several different variables. These were 3 different plants with 2 different expression systems. These were <i> N. benthamiana</i> and <i> N. tabacum</i> (CVs TI-95 and I-64), each with <i> Agrobacterium</i>-mediated transformation, and using HyperTrans or PVX as an expression system. <br><br>'Pc' is Total Soluble Protein (TSP) concentration, and was estimated to be 6.2mg TSP per gram of leaf in <i> N. benthamiana</i> (Robert et al., 2013) and 17.5mg/g in an average <i>N. tabacum</i> cultivar such as CV. I-64 (Song et al., 2015). Protein concentration in <i>N. tabacum</i> CV. TI-95 is above average, and about 1.8x higher than CV. I-64 according to Conley et al. (2010), so 'Pc' for this cultivar is assumed to be 31.5mg/g.<br><br> 'M' is the total mass of leaves on a plant as calculated by Conley et al. (2010). <i>N. benthamiana</i> has a mean leaf mass of 10g/plant, <i>N. tabacum</i> CV. TI-95 has a mean leaf mass of 110g/plant, and CV. I-64 has a mean leaf mass of 410g/plant! The assumption here is that all the leaves are effectively inflitrated. This clearly would need a large scale production facility as at <a href="http://medicago.com/">Medicago.</a><br><br>
In this final equation, 'P' represents plant statistics. For our model, this is how many µU of antagonist one plant can produce. This is the variable that we made several substitutes to, to show that the model can be adjusted to suit new uses. Here, we tested several different variables. These were 3 different plants with 2 different expression systems. These were <i> N. benthamiana</i> and <i> N. tabacum</i> (CVs TI-95 and I-64), each with <i> Agrobacterium</i>-mediated transformation, and using HyperTrans or PVX as an expression system. <br><br>'Pc' is Total Soluble Protein (TSP) concentration, and was estimated to be 6.2mg TSP per gram of leaf in <i> N. benthamiana</i> (Robert et al., 2013) and 17.5mg/g in an average <i>N. tabacum</i> cultivar such as CV. I-64 (Song et al., 2015). Protein concentration in <i>N. tabacum</i> CV. TI-95 is above average, and about 1.8x higher than CV. I-64 according to Conley et al. (2010), so 'Pc' for this cultivar is assumed to be 31.5mg/g.<br><br> 'M' is the total mass of leaves on a plant as calculated by Conley et al. (2010). <i>N. benthamiana</i> has a mean leaf mass of 10g/plant, <i>N. tabacum</i> CV. TI-95 has a mean leaf mass of 110g/plant, and CV. I-64 has a mean leaf mass of 410g/plant! The assumption here is that all the leaves are effectively inflitrated. This clearly would need a large scale production facility as at <a href="http://medicago.com/">Medicago.</a><br><br>
−
'E' represents the efficiency of the production system, of both the plant and the expression system. Conley et al. (2010) reported that <i> N. benthamiana</i> produced 11.4ng of erythropoietin (EPO) per mg of TSP. <i>N. tabacum</i> CV. I-64 produced 22.12ng/mg, and <i>N. tabacum</i> CV. TI-95 produced 36.05ng/mg. Here we made the assumption that the same amount of TSH-antagonist (mass of 28kDA) would be produced as EPO (mass of 30.4kDa). Lastly, <a href="http://pbltechnology.com/">Pbltechnology (2017)</a> state that transformation using CPMV-HyperTrans can produce recombinant protein up to 30% TSP, and Hefferon (2017) state similar numbers using Potato Virus X in <i>N. benthamiana</i>. Consequently, we calculated how much TSH-antagonist might be created using a HyperTrans or PVX system, by multiplying the total protein content of each plant by 0.3. With these calculations we assume that TSH can be purified from leaf tissue in the same amounts as EPO. As this can only be empirically determined we are satisfied to make this assumption. <br><br> Finally, we multiply by 12 as TSH has an activity of 12IU per mg, and as our antagonist is TSH with slightly different amino acids at a few sites to remove glycosylation we can assume that the antagonist also has 12IU per mg. Using the values taken from the EPO statistics in Conley et al. (2010), we use the first of these equations, as the EPO content is measured in ng/mg so we need to divide by 1,000,000 to convert this to mg/mg. Then, as we want the antagonist to be in IµU, we need to multiply by 1,000,000, so these cancel out. Conversely, using the HyperTrans or PVX systems, we still need to convert IU to IµU so multiply by 1,000,000, but as these generate recombinant protein up to 30% TSP, the 'E' variable is already 0.3mg/mg so does not need to be converted. Thus, this uses the second equation.
+
'E' represents the efficiency of the production system, of both the plant and the expression system. Conley et al. (2010) reported that <i> N. benthamiana</i> produced 11.4ng of erythropoietin (EPO) per mg of TSP. <i>N. tabacum</i> CV. I-64 produced 22.12ng/mg, and <i>N. tabacum</i> CV. TI-95 produced 36.05ng/mg. Here we made the assumption that the same amount of TSH-antagonist (mass of 28kDA) would be produced as EPO (mass of 30.4kDa). Lastly, <a href="http://pbltechnology.com/">Pbltechnology (2017)</a> state that transformation using CPMV-HyperTrans can produce recombinant protein up to 30% TSP, and Hefferon (2017) state similar numbers using Potato Virus X in <i>N. benthamiana</i>. Consequently, we calculated how much TSH-antagonist might be created using a HyperTrans or PVX system, by multiplying the total protein content of each plant by 0.3. With these calculations we assume that TSH can be purified from leaf tissue in the same amounts as EPO. As this can only be empirically determined we are satisfied in making this assumption. <br><br> Finally, we multiply by 12 as TSH has an activity of 12IU per mg, and as our antagonist is TSH with slightly different amino acids at a few sites to remove glycosylation we can assume that the antagonist also has 12IU per mg. Using the values taken from the EPO statistics in Conley et al. (2010), we use the first of these equations, as the EPO content is measured in ng/mg so we need to divide by 1,000,000 to convert this to mg/mg. Then, as we want the antagonist to be in IµU, we need to multiply by 1,000,000, so these cancel out. Conversely, using the HyperTrans or PVX systems, we still need to convert IU to IµU so multiply by 1,000,000, but as these generate recombinant protein up to 30% TSP, the 'E' variable is already 0.3mg/mg so does not need to be converted. Thus, this uses the second equation.