Line 542: | Line 542: | ||
<p class="content-1">Equations & Solutions</p> | <p class="content-1">Equations & Solutions</p> | ||
<img src="https://static.igem.org/mediawiki/2017/8/8c/Equations.png" class="bigphoto" width="70%"> | <img src="https://static.igem.org/mediawiki/2017/8/8c/Equations.png" class="bigphoto" width="70%"> | ||
− | <p class="content">According to the picture | + | <p class="content">According to the picture, we can write down 3 equations as follows:</p> |
<img src="https://static.igem.org/mediawiki/2017/c/c4/Modeling5.jpeg" class="bigphoto" width="70%"> | <img src="https://static.igem.org/mediawiki/2017/c/c4/Modeling5.jpeg" class="bigphoto" width="70%"> | ||
− | <p class="content">P.S. φ= the result of multiplication of rate constant, coefficient of correction (since a promoter is different from a reagtant), a dimension <span style="font-style:italic;">𝑇< | + | <p class="content">P.S. φ= the result of multiplication of rate constant, coefficient of correction (since a promoter is different from a reagtant), a dimension <span style="font-style:italic;">𝑇<sup>−1</sup></span></p> |
<p class="content">By solving these 3 equations, the solution expressed by <span style="font-style:italic;">φ、k and [P<sup>a</sup>]</span> are as follows: | <p class="content">By solving these 3 equations, the solution expressed by <span style="font-style:italic;">φ、k and [P<sup>a</sup>]</span> are as follows: | ||
Line 552: | Line 552: | ||
<img src="https://static.igem.org/mediawiki/2017/5/57/Modeling7.jpeg" class="bigphoto" width="70%"> | <img src="https://static.igem.org/mediawiki/2017/5/57/Modeling7.jpeg" class="bigphoto" width="70%"> | ||
− | <p class="content">Besides, since <span style="font-style:italic;">lim<sub>t→∞</sub>(1-1/e<sup>kt</sup> = 1</span>, satisfying the definition of the horizontal asymptotes. And | + | <p class="content">Besides, since <span style="font-style:italic;">lim<sub>t→∞</sub>(1-1/e<sup>kt</sup> = 1</span>, satisfying the definition of the horizontal asymptotes. And d(1-1/e<sup>kt</sup>)/dt=ke<sup>-kt</sup>>0 (t∈[0,∞)), so it is a strictly increasing function. |
<br>So, this is a strictly increasing and convergent function with an upper bound 1.</br> | <br>So, this is a strictly increasing and convergent function with an upper bound 1.</br> | ||
<br>Then the result is that the extremum of the concentration is:</br></p> | <br>Then the result is that the extremum of the concentration is:</br></p> | ||
Line 559: | Line 559: | ||
<p class="content-1">Degradation Rate Constant Calculation</p> | <p class="content-1">Degradation Rate Constant Calculation</p> | ||
− | <p class="content">As for the other variable written in the solutions | + | <p class="content">As for the other variable written in the solutions, the degradation rate constant, can also be solved with differential equations. Since the degradation rate is an “order one” reaction, the equation can be written as follow:</p> |
<p class="content"><span style="font-style:italic;">dM/dt= -k<sub>d</sub>M</span></p> | <p class="content"><span style="font-style:italic;">dM/dt= -k<sub>d</sub>M</span></p> | ||
− | <p class="content">Then, after solving the equation and substituting the boundary conditions<br>(t = 0⇒M = M<sub>0</sub>), the the solution is:</br></p> | + | <p class="content">Then, after solving the equation and substituting the boundary conditions<br><span style="font-style:italic;">(t = 0⇒M = M<sub>0</sub>)</span>, the the solution is:</br></p> |
<img src="https://static.igem.org/mediawiki/2017/2/24/Modeling9.jpeg" class="bigphoto" width="70%"> | <img src="https://static.igem.org/mediawiki/2017/2/24/Modeling9.jpeg" class="bigphoto" width="70%"> | ||
Revision as of 03:03, 31 October 2017