Line 245: | Line 245: | ||
</div> | </div> | ||
− | <video controls="" class="col-lg- | + | <div class="image_container col-lg-8"> |
− | + | <video controls="" class="col-lg-12"> | |
− | + | <source src="https://static.igem.org/mediawiki/2017/7/75/T--TAS_Taipei--Biofilm_Video.mp4" type="video/mp4"> Your browser does not support the video tag. | |
+ | </video> | ||
+ | <h4 class="subtitle"><b> Video 5-2 Testing biofilm in simulated sedimentation tanks.</b> Based on Boswell’s circular tank design, we built our own “sedimentation tanks” using clear plastic tubes, and attached biocarriers to a central spinning rotor. Three tanks were set up: biofilm + distilled water (left), biofilm + AuNP (middle), and AuNP solution alone (right). After about 30 hours of mixing, the color of the AuNP solution started to change from purple to clear in the cylinder containing biofilm. In contrast, the cylinder containing only AuNP solution did not change at all. Timelapse video shows the tanks 36 hours after the start. <span class="subCred">Experiment & Video: Yvonne W.</span></h4> | ||
+ | </div> | ||
</div><br> | </div><br> | ||
<div class="row" id="Boswell"> | <div class="row" id="Boswell"> |
Latest revision as of 02:21, 1 November 2017
X
Project
Experiments
Modeling
Prototype
Human Practices
Safety
About Us
Attributions
Project
Experiment
Modeling
Prototype
Human Practice
Safety
About Us
Attributions
hi
HP GOLD INTEGRATED
At the beginning of our project, we visited local and foreign wastewater treatment plants (WWTPs) and learned that there are currently very few wastewater treatment methods that specifically target nanoparticle (NP) waste. We designed our constructs, prototype and modeling based directly from information given by these treatment plants. Our biofilm parts collection was designed to be able to control biofilm production in sedimentation tanks. Our proteorhodopsin construct is designed to be used in aeration tanks where other microbes are already breaking down organic substances. We also use the pre-existing biosafety aspect of the wastewater plants. Additionally, we reached out to several NP manufacturers, researchers, disposal services and wastewater experts who provided us with information on the advantages and potential consequences of NP usage, as well as where to target NP waste removal. The feedback we received guided the direction of our project and confirmed the importance of our project to our community.
Bioethics Panel
We hosted a Bioethics Panel, where we invited students and teachers to discuss the moral, social and environmental concerns of our project. To encourage participants to consider the problems from multiple perspectives, we created a role-playing game and assigned different roles to the participants. We then asked for their opinions on NP usage and disposal from the perspective of their assigned role. (Whole team activity)
For instance, one of our questions was:
“Dihua WWTP has no nanoparticle removal plan. Should this be the job of the wastewater plant? Or the nanoparticle manufacturer?”
The following roles were assigned:
- Wastewater plant manager
- Nanoparticle manufacturer
- Citizen
- Fisherman
- Fish
Most of the wastewater plant managers thought that NP manufacturers should be responsible for removing NP, because they have more information (e.g., solubility, toxicity, etc.) about their own products. However, many other participants were skeptical that manufacturers could be trusted to remove their own contamination and agreed that WWTPs should ultimately be responsible for cleaning water contaminated with NPs.
This activity gave us great insight on how the public perceives NP usage and regulation, and provided us a chance to inform people about both the benefits and the dangers of using NPs. We first had the idea that we should create a filter that the consumers can purchase to clean NPs out of their household waste. However, after the bioethics panel, the results showed that most people think WWTPs functioning under the government should be responsible for cleaning NP waste, because all wastewater would eventually accumulate in the WWTPs. Aside from analyzing the responses from the bioethics panel, we also tested products from NP manufactures (discussed below) that proved targeting wastewater would be the most ideal approach to clean NP waste. This is why we decided to focus our project on trapping NPs in WWTPs.