Difference between revisions of "Team:Newcastle/Results"

Line 461: Line 461:
 
         <div id="syn-prom-lib" class="collapse">
 
         <div id="syn-prom-lib" class="collapse">
  
           <h2  style="font-size: 1em"> BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX) </h2>
+
           <h2  style="font-size: 1em"> BioBricks used: BBa_J61002 (Arkin Lab 2006) </h2>
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the limitations identified by our team [hyperlink to human practices] that hamper the success in biosensors development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli</i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the limitations identified by our team [hyperlink to human practices] that hamper the success in biosensors development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli</i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           </br></br>
 
           </br></br>
           This section of the project is based on testing the modularity of the system by replacing the IPTG sensing unit present in the Sensynova platform with various synthetic promoters that are regulated by small molecules.</p>
+
           This section of the project is based on testing the modularity of the system by replacing the IPTG sensing unit present in the Sensynova platform with various synthetic promoters that are regulated by small molecules.
 +
 
 +
</p>
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
Line 653: Line 655:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
           <p>The results demonstrate that further characterisation needs to be conducted in order to optimise the psicose detector variant in the Sensynova platform however, due to time constraints resulted from synthesis delays, we lacked the time to be able to do so.
+
           <p>The results demonstrate that further characterisation needs to be conducted in order to optimise the psicose detector variant in the Sensynova platform however, due to time constraints resulted from synthesis delays, we lacked the time to be able to do so. The preliminary experiments conducted for the framework customised as the psicose biosensor were conducted by following data resulted from the model of the framework customised as the IPTG sensor. In order for future characterisation of this part, the model should be modified in order to guide in vivo efforts accordingly.
 
           </br></br>
 
           </br></br>
 
We also lacked the time to co-culture this part with the Sensynova platform's multiple modules in order for the creation of variants for the Evry Paris-Saclay. The part <a href="http://parts.igem.org/Part:BBa_K2205023"> BBa_K2205023</a>, the Evry Paris-Saclay's psicose biosensor system as the detecting unit of the platform, has been submitted to the iGEM registry for future work and characterisation by future teams.</p>
 
We also lacked the time to co-culture this part with the Sensynova platform's multiple modules in order for the creation of variants for the Evry Paris-Saclay. The part <a href="http://parts.igem.org/Part:BBa_K2205023"> BBa_K2205023</a>, the Evry Paris-Saclay's psicose biosensor system as the detecting unit of the platform, has been submitted to the iGEM registry for future work and characterisation by future teams.</p>

Revision as of 18:28, 31 October 2017

spacefill

Our Experimental Results



Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!