Difference between revisions of "Team:Newcastle/Results"

Line 1,391: Line 1,391:
 
             <p>Cells extracts being used in CFPS systems tend to be supplemented with a cocktail of compounds and molecules to aid the process of transcription and translation (Figure 1). Although exact supplement solutions can vary from protocol to protocol, most have the same basic composition; salts, nucleotides, tRNAs, co-factors, energy sources, and amino acids (Yang, <i>et al</i>., 2012). The supplement solution used in this study is based on the Cytomin system (Jewett, <i>et al</i>., 2008). For the cytomin supplement solution, the major energy source is sodium pyruvate, which is converted to acetate through a series of reactions catalysed by enzymes in the crude cell extract. The first reaction, pyruvate to acetyl-CoA, requires nicotinamide diphosphate (NAD) and Co-enzyme A (CoA) as co-factors. Both of these are components of the premix and hence added to the system to enhance flux through the reaction. The acetyl CoA is phosphorylated by inorganic phosphate, and then de-phosphorylated to produce ATP from ADP. The ATP is used as energy to drive translation of mRNA.
 
             <p>Cells extracts being used in CFPS systems tend to be supplemented with a cocktail of compounds and molecules to aid the process of transcription and translation (Figure 1). Although exact supplement solutions can vary from protocol to protocol, most have the same basic composition; salts, nucleotides, tRNAs, co-factors, energy sources, and amino acids (Yang, <i>et al</i>., 2012). The supplement solution used in this study is based on the Cytomin system (Jewett, <i>et al</i>., 2008). For the cytomin supplement solution, the major energy source is sodium pyruvate, which is converted to acetate through a series of reactions catalysed by enzymes in the crude cell extract. The first reaction, pyruvate to acetyl-CoA, requires nicotinamide diphosphate (NAD) and Co-enzyme A (CoA) as co-factors. Both of these are components of the premix and hence added to the system to enhance flux through the reaction. The acetyl CoA is phosphorylated by inorganic phosphate, and then de-phosphorylated to produce ATP from ADP. The ATP is used as energy to drive translation of mRNA.
 
             </br>
 
             </br>
 +
<br />
 
</p>
 
</p>
  
Line 1,399: Line 1,400:
  
 
<p>
 
<p>
 
+
<br />
 
</br>
 
</br>
 
             Energy can also be derived from glutamate in the supplement solution (Jewett, <i>et al</i>., 2008), which is added in the form of magnesium glutamate and potassium glutamate. Glutamate is a metabolite in the tricarboxylic acid cycle, which generates NADH. In whole cells, NADH is used in oxidative phosphorylation to produce ATP. Oxidative phosphorylation relies on membrane bound proteins and proton gradients across a membrane. It has been shown previously that extracts prepared using French Press or sonication contain membrane vesicles which have ATPase activity (Futai, 1974), and that oxidative phosphorylation can be activated in CFPS systems (Jewett, <i>et al</i>., 2008).
 
             Energy can also be derived from glutamate in the supplement solution (Jewett, <i>et al</i>., 2008), which is added in the form of magnesium glutamate and potassium glutamate. Glutamate is a metabolite in the tricarboxylic acid cycle, which generates NADH. In whole cells, NADH is used in oxidative phosphorylation to produce ATP. Oxidative phosphorylation relies on membrane bound proteins and proton gradients across a membrane. It has been shown previously that extracts prepared using French Press or sonication contain membrane vesicles which have ATPase activity (Futai, 1974), and that oxidative phosphorylation can be activated in CFPS systems (Jewett, <i>et al</i>., 2008).

Revision as of 18:52, 31 October 2017

spacefill

Our Experimental Results



Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!