Difference between revisions of "Team:Newcastle/Results"

Line 374: Line 374:
 
           <p>Sarcosine Oxidase (SOX) is an enzyme that oxidatively demethylates sarcosine to form glycine, hydrogen peroxide and formaldehyde (Figure 1) (Trickey <i>et al</i>. 1999). SOX was selected to be an example of a possible solution to one of the 5 problems in biosensor production that we identified - unconventional substrates. We defined an unconventional substrate as a substrate that we have little prior knowledge of but that can be adapted into something with an existing biosensor. SOX was specifically chosen to demonstrate that glyphosate, an unconventional substrate which there is not a lot information on, can be converted into formaldehyde which there are existing biosensors for (Ling and Heng 2010).
 
           <p>Sarcosine Oxidase (SOX) is an enzyme that oxidatively demethylates sarcosine to form glycine, hydrogen peroxide and formaldehyde (Figure 1) (Trickey <i>et al</i>. 1999). SOX was selected to be an example of a possible solution to one of the 5 problems in biosensor production that we identified - unconventional substrates. We defined an unconventional substrate as a substrate that we have little prior knowledge of but that can be adapted into something with an existing biosensor. SOX was specifically chosen to demonstrate that glyphosate, an unconventional substrate which there is not a lot information on, can be converted into formaldehyde which there are existing biosensors for (Ling and Heng 2010).
 
           </br></br>
 
           </br></br>
           As part of our project, SOX was designed to be an ‘adapter’ that could link glyphosate into our framework via a formaldehyde detector module. This concept could then be applied to other molecules that have easily detectable substrates in their degradation pathways. The aim of this part of the project was to demonstrate that SOX can be expressed by <i>E. coli</i> cells and that when glyphosate is added SOX can convert it to formaldehyde to be detected via a biosensor.
+
           As part of our project, SOX was designed to be an ‘adaptor’ that could link glyphosate into our framework via a formaldehyde detector module. This concept could then be applied to other molecules that have easily detectable substrates in their degradation pathways. The aim of this part of the project was to demonstrate that SOX can be expressed by <i>E. coli</i> cells and that when glyphosate is added SOX can convert it to formaldehyde to be detected via a biosensor.
 
<div class="SOX"><img src="https://static.igem.org/mediawiki/2017/d/d9/T--Newcastle--glyphosate_pathway.png" width="40%"/>
 
<div class="SOX"><img src="https://static.igem.org/mediawiki/2017/d/d9/T--Newcastle--glyphosate_pathway.png" width="40%"/>
 
<br />
 
<br />
Line 388: Line 388:
 
           The mining of transcriptome data has previously been used to find responsive DNA elements to a molecule of interest (Groningen 2012). Therefore, we analysed differences in transcriptome data between glyphosate sensitive and insensitive plants. A number of genes were found which were differently expressed. However, it was determined that it is more likely that this differential expression was not due to glyphosate directly, but rather the aromatic amino acid starvation caused by EPSPS inhibition by glyphosate, making these systems unsuitable for direct glyphosate detection. Various other systems we designed were also far from ideal, with high levels of complexity and reliance on native plant machinery.
 
           The mining of transcriptome data has previously been used to find responsive DNA elements to a molecule of interest (Groningen 2012). Therefore, we analysed differences in transcriptome data between glyphosate sensitive and insensitive plants. A number of genes were found which were differently expressed. However, it was determined that it is more likely that this differential expression was not due to glyphosate directly, but rather the aromatic amino acid starvation caused by EPSPS inhibition by glyphosate, making these systems unsuitable for direct glyphosate detection. Various other systems we designed were also far from ideal, with high levels of complexity and reliance on native plant machinery.
 
           </br></br>
 
           </br></br>
           Through conversations with biosensor developers, we found that this problem was common in biosensor development - large amounts of often unavailable data is required for system design. For the Sensynova framework, we needed a more generic solution to this issue. Therefore, we expanded our search to look for biochemical reactions which we could monitor instead. This resulted in our concept of “adapter” devices which can alter difficult to sense molecules using biochemical reactions. </p>
+
           Through conversations with biosensor developers, we found that this problem was common in biosensor development - large amounts of often unavailable data is required for system design. For the Sensynova framework, we needed a more generic solution to this issue. Therefore, we expanded our search to look for biochemical reactions which we could monitor instead. This resulted in our concept of “adaptor” devices which can alter difficult to sense molecules using biochemical reactions. </p>
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
Line 797: Line 797:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
           <p>To construct the Fim reporter switch 3 separate gBlocks were designed with overlapping adapter regions homologous to the iGEM prefix and suffix to allow for Gibson assembly into the pSB1C3 backbone whilst retaining biobrick compatibility.  The individual genes and other components are shown in (Table 1).  The 1st gBlock sequence starts with a RBS (<a href="http://parts.igem.org/Part:BBa_B0034">B0034</a>) upstream of the <i>fimE</i> ORF (<a href="http://parts.igem.org/Part:BBa_K137007">K137007</a>) with no promoter region, this is to allow for other promoters to be cloned in upstream of the part.  Downstream of the <i>fimE</i> gene is a double terminator (<a href="http://parts.igem.org/Part:BBa_B0015">B0015</a>).  All RBS and terminator sequences used are B0034 and B0015 respectively.  The switching mechanism consists of the Fim promoter sequence (<a href="http://parts.igem.org/Part:BBa_K1632004">K1632004</a>) flanked by two RBS-ORF-Terminator sequences.  While in the native [OFF] state the Fim promoter drives expression of eforRed (<a href="http://parts.igem.org/Part:BBa_K592012">K592012</a>) and when flipped to the [ON] state drives expression of <i>rhlI</i> (<a href="http://parts.igem.org/Part:BBa_J64718)">J64718)</a>.  The rationale behind using the <i>fimE</i> gene instead of<i>fimB</i> is that it permanently inverts the promoter region meaning weak induction signals can be amplified by the Fim switch. <br/><br/>
+
           <p>To construct the Fim reporter switch 3 separate gBlocks were designed with overlapping adaptor regions homologous to the iGEM prefix and suffix to allow for Gibson assembly into the pSB1C3 backbone whilst retaining biobrick compatibility.  The individual genes and other components are shown in (Table 1).  The 1st gBlock sequence starts with a RBS (<a href="http://parts.igem.org/Part:BBa_B0034">B0034</a>) upstream of the <i>fimE</i> ORF (<a href="http://parts.igem.org/Part:BBa_K137007">K137007</a>) with no promoter region, this is to allow for other promoters to be cloned in upstream of the part.  Downstream of the <i>fimE</i> gene is a double terminator (<a href="http://parts.igem.org/Part:BBa_B0015">B0015</a>).  All RBS and terminator sequences used are B0034 and B0015 respectively.  The switching mechanism consists of the Fim promoter sequence (<a href="http://parts.igem.org/Part:BBa_K1632004">K1632004</a>) flanked by two RBS-ORF-Terminator sequences.  While in the native [OFF] state the Fim promoter drives expression of eforRed (<a href="http://parts.igem.org/Part:BBa_K592012">K592012</a>) and when flipped to the [ON] state drives expression of <i>rhlI</i> (<a href="http://parts.igem.org/Part:BBa_J64718)">J64718)</a>.  The rationale behind using the <i>fimE</i> gene instead of<i>fimB</i> is that it permanently inverts the promoter region meaning weak induction signals can be amplified by the Fim switch. <br/><br/>
 
<center><b>Table 1:</b> Table of parts used for constructing the Fim Switch.<br/></center>
 
<center><b>Table 1:</b> Table of parts used for constructing the Fim Switch.<br/></center>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/e/ee/--T--Newcastle--MP--Table_Fim.png"/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/e/ee/--T--Newcastle--MP--Table_Fim.png"/>

Revision as of 20:18, 31 October 2017

spacefill

Our Experimental Results



Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!