Difference between revisions of "Team:Newcastle/Results"

Line 517: Line 517:
  
 
</p>
 
</p>
 
+
</br>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
</br>
 
</br>
Line 808: Line 808:
 
          
 
          
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 +
</br>
 
     <p>The Sensynova multicellular biosensor platform has been developed to overcome the <a href="https://2017.igem.org/Team:Newcastle/HP/Silver">limitations identified by our team</a> that hamper the success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli </i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
     <p>The Sensynova multicellular biosensor platform has been developed to overcome the <a href="https://2017.igem.org/Team:Newcastle/HP/Silver">limitations identified by our team</a> that hamper the success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli </i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           </br></br>
 
           </br></br>
Line 814: Line 815:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 +
</br>
 
           <p>The formaldehyde biosensor, part BBa_K749021, was selected was originally made and submitted to the iGEM registry by the TMU-Tokyo 2012 team.  
 
           <p>The formaldehyde biosensor, part BBa_K749021, was selected was originally made and submitted to the iGEM registry by the TMU-Tokyo 2012 team.  
 
           </br></br>
 
           </br></br>
Line 834: Line 836:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 +
</br>
 
           <p>In order to implement the Formaldehyde biosensor variant to the Sensynova platform, a design was created by replacing the IPTG sensing system in the original detector module with the construct detailed above, creating part <a href="http://parts.igem.org/Part:BBa_K2205030">BBa_K2205030 </a>.   
 
           <p>In order to implement the Formaldehyde biosensor variant to the Sensynova platform, a design was created by replacing the IPTG sensing system in the original detector module with the construct detailed above, creating part <a href="http://parts.igem.org/Part:BBa_K2205030">BBa_K2205030 </a>.   
 
           </br></br>
 
           </br></br>
Line 863: Line 866:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Future Work </h2>
 +
</br>
 
           <p>Due to time constraints, we lacked the time to synthesise, implement and characterise this part into the Sensynova platform within the lab. Future work on this part would include characterisation <i>in vivo</i> guided by the modelling of the framework when customised as a formaldehyde biosensor and testing against the Sarcosine Oxidase adaptor module currently present in the framework.  
 
           <p>Due to time constraints, we lacked the time to synthesise, implement and characterise this part into the Sensynova platform within the lab. Future work on this part would include characterisation <i>in vivo</i> guided by the modelling of the framework when customised as a formaldehyde biosensor and testing against the Sarcosine Oxidase adaptor module currently present in the framework.  
 
           </p>
 
           </p>
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 +
</br>
 
           <p>iGEM Community (2012). Team TMU-Tokyo 2012. [online] Available at: https://2012.igem.org/Team:TMU-Tokyo [Accessed 1 Nov. 2017].
 
           <p>iGEM Community (2012). Team TMU-Tokyo 2012. [online] Available at: https://2012.igem.org/Team:TMU-Tokyo [Accessed 1 Nov. 2017].
 
           </p>
 
           </p>

Revision as of 17:06, 1 November 2017

spacefill

Our Experimental Results


Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!