Difference between revisions of "Team:Newcastle/Model"

 
Line 412: Line 412:
  
 
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U., (2006),
 
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U., (2006),
  COPASI -- A COmplex PAthway SImulator, <i>Bioinformatics</i>, 22(24), pp 3067-3074<br />
+
  COPASI -- A COmplex PAthway SImulator, <i>Bioinformatics</i>, 22(24), pp 3067-3074 <br/><br/>
  
Hucka, M., <i>et al.</i>, (2003), The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models, <i>Bioinformatics</i>, 19(4), pp 524-531<br />
+
Hucka, M., <i>et al.</i>, (2003), The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models, <i>Bioinformatics</i>, 19(4), pp 524-531 <br/><br/>
  
Naylor, J., Fellerman, H., Ding, Y., Mohammed, W.K., Jakubovics, N.S., Mukherjee, J., Biggs, C.A., Wright, P.C., Krasnogor, N., (2017), Simbiotics: A Multiscale Integrative Platform for 3D modeling of Bacterial Populations, <i>ACS Synth. Biol.</i>, 6(7), pp 1194-1210<br />
+
Naylor, J., Fellerman, H., Ding, Y., Mohammed, W.K., Jakubovics, N.S., Mukherjee, J., Biggs, C.A., Wright, P.C., Krasnogor, N., (2017), Simbiotics: A Multiscale Integrative Platform for 3D modeling of Bacterial Populations, <i>ACS Synth. Biol.</i>, 6(7), pp 1194-1210 <br/><br/>
  
  
Line 613: Line 613:
 
<p>
 
<p>
  
Anderson, M. J. & Whitcomb, P. J., 2010. Design of Experiments. In: Kirk-Othmer Encyclopedia of Chemical Technology. <i>s.l.:John Wiley & Sons, Inc</i>, pp. 1-22. <br />
+
Anderson, M. J. & Whitcomb, P. J., 2010. Design of Experiments. In: Kirk-Othmer Encyclopedia of Chemical Technology. <i>s.l.:John Wiley & Sons, Inc</i>, pp. 1-22. <br/><br/>
  
Garamella, J., Marshall, R., Rustad, M. & Noireaux, V., 2016. The All <i>E. coli</i> TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. <i>ACS Syn. Biol.</i>, 5(4), pp. 344-355.<br />
+
Garamella, J., Marshall, R., Rustad, M. & Noireaux, V., 2016. The All <i>E. coli</i> TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. <i>ACS Syn. Biol.</i>, 5(4), pp. 344-355. <br/><br/>
  
Kelwick, R., Webb, A. J., MacDonald, J. & Freemont, P. S., 2016. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. <i>Metab. Eng.</i>, Volume 38, pp. 370-381.<br />
+
Kelwick, R., Webb, A. J., MacDonald, J. & Freemont, P. S., 2016. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. <i>Metab. Eng.</i>, Volume 38, pp. 370-381. <br/><br/>
  
Li, J., Gu, L., Aach, J. & Church, G. M., 2014. Improved Cell-Free RNA and Protein Synthesis System. PLoS ONE, 9(9).<br />
+
Li, J., Gu, L., Aach, J. & Church, G. M., 2014. Improved Cell-Free RNA and Protein Synthesis System. PLoS ONE, 9(9). <br/><br/>
  
SAS Institute Inc., 2016. JMP® 13 Design of Experiments Guide. Cary, NC, USA: SAS Institute Inc.<br />
+
SAS Institute Inc., 2016. JMP® 13 Design of Experiments Guide. Cary, NC, USA: SAS Institute Inc. <br/><br/>
  
Yang, W. C., Patel, K. & Wong, H. E., 2012. Simplifying and streamlining <i>Escherichia coli</i>-based cell-free protein synthesis. <i>Biotechnol. Prog.</i>, 28(2), pp. 413-420.<br />
+
Yang, W. C., Patel, K. & Wong, H. E., 2012. Simplifying and streamlining <i>Escherichia coli</i>-based cell-free protein synthesis. <i>Biotechnol. Prog.</i>, 28(2), pp. 413-420. <br/><br/>
  
  

Latest revision as of 22:40, 1 November 2017

spacefill

Our Models


For our project, we built three types of models. The first was an agent-based model which simulated our multicellular biosensor framework. This model gave insight into the optimal ratio of cell-types to have in the system. This information was used during experimental characterisation to optimise our system.

Our second model was a statistical, multifactorial Design of Experiments (DoE) approach towards optimising Cell-Free Protein Synthesis (CFPS) systems. This statistical model was used to generate an experimental design to gather data on the importance of certain supplements in CFPS systems, and then use the experimental data to optimise CFPS systems.

Our third model was an agent-based model designed to replicate the functions of a digital microfluidic chip and schedule the tasks for the device. The final piece of software controls agents which are the microfluidic droplets and moves them around the simulated chip according to predefined movement plans which can be read from either the program itself or custom external files. This provides a quicker, more inexpensive means of testing the chip than repeated real-world experiments.


Please click on the links below to find out more about our models.