Difference between revisions of "Team:Newcastle/Results"

Line 1,702: Line 1,702:
  
 
<div>
 
<div>
<img src="https://static.igem.org/mediawiki/2017/1/1d/T--Newcastle--BB_pSB1C3-sfGFP_plasmid_map.png" width="400px" class="img-fluid border border-dark rounded mx-auto d-block" style="background-color:white; margin-right: 2%; margin-bottom: 2%; alt=""/>
+
<img src="https://static.igem.org/mediawiki/2017/1/1d/T--Newcastle--BB_pSB1C3-sfGFP_plasmid_map.png" width="400px" class="img-fluid border border-dark rounded mx-auto d-block" style="background-color:white; margin-right: 2%; margin-bottom: 2%;" alt=""/>
 
<p class="legend"><center><strong>Figure 2:</strong> Plasmid map for pSB1C3-sfGFP. Construct is standard biobrick part BBa_ K515105.</center></p>
 
<p class="legend"><center><strong>Figure 2:</strong> Plasmid map for pSB1C3-sfGFP. Construct is standard biobrick part BBa_ K515105.</center></p>
 
</div>
 
</div>
Line 1,757: Line 1,757:
  
 
<div>
 
<div>
<img src="https://static.igem.org/mediawiki/2017/b/b0/T--Newcastle--BB_CFPS_figure4.png" width="600px" class="img-fluid border border-dark rounded mx-auto d-block" style="background-color:white; margin-right: 2%; margin-bottom: 2%; alt=""/>
+
<img src="https://static.igem.org/mediawiki/2017/b/b0/T--Newcastle--BB_CFPS_figure4.png" width="600px" class="img-fluid border border-dark rounded mx-auto d-block" style="background-color:white; margin-right: 2%; margin-bottom: 2%;" alt=""/>
 
<p class="legend"><center><strong>Figure 5:</strong> Screening model constructed using JMP showing which factors were closest to significance. Predictions for interactions are unreliable due to forced orthogonality (*). Of the primary factors, magnesium glutamate is the closest to significant, followed by potassium glutamate, sodium oxalate, and ammonium acetate in that order.</center></p>
 
<p class="legend"><center><strong>Figure 5:</strong> Screening model constructed using JMP showing which factors were closest to significance. Predictions for interactions are unreliable due to forced orthogonality (*). Of the primary factors, magnesium glutamate is the closest to significant, followed by potassium glutamate, sodium oxalate, and ammonium acetate in that order.</center></p>
 
</div>
 
</div>
Line 1,932: Line 1,932:
 
     </div>
 
     </div>
  
  </div>
 
  
  <div class="jumbotron rounded" style="background-color: #e8e8e8; border: 4px solid #171717; margin-top: 2%; margin-bottom: 2%">
+
    <hr>
    <h1 class="display-3" style="color: #171717">Key Achievements</h1>
+
 
    <p class="lead" style="color: #171717">A condensed list of our most notable results</p>
+
    <div class="jumbotron rounded" style="background-color: #e8e8e8; border: 4px solid #171717; margin-top: 2%; margin-bottom: 2%">
    <hr style="color: #171717">
+
      <h1 class="display-4" style="color: #171717">Key Achievements</h1>
    <ul style="list-style: none; color: #171717">
+
      <p class="lead" style="color: #171717">A condensed list of our most notable results</p>
      <li style="font-family: Rubik">- Designed a novel framework for biosensor development</li>
+
      <hr style="color: #171717">
      <li style="font-family: Rubik">- Proved that multicellular biosensors are able to co-ordinate responses to input molecules through a proof-of-concept IPTG responsive biosensor</li>
+
      <ul style="list-style: none; color: #171717">
      <li style="font-family: Rubik">- Successful characterisation of a transpose-based “stand-by switch” capable of producing eforRed in the “OFF” state, and C4 AHL in the “ON” state</li>
+
        <li style="font-family: Rubik">- Designed a novel framework for biosensor development</li>
      <li style="font-family: Rubik">- Used a Design of Experiments approach to successfully optimise a cell-free system</li>
+
        <li style="font-family: Rubik">- Proved that multicellular biosensors are able to co-ordinate responses to input molecules through a proof-of-concept IPTG responsive biosensor</li>
      <li style="font-family: Rubik">- Improved the BLANK plasmid for promoter screening</li>
+
        <li style="font-family: Rubik">- Successful characterisation of a transpose-based “stand-by switch” capable of producing eforRed in the “OFF” state, and C4 AHL in the “ON” state</li>
      <li style="font-family: Rubik">- Expressed and characterised Sarcosine Oxidase, showing successful degradation of sarcosine to formaldehyde</li>
+
        <li style="font-family: Rubik">- Used a Design of Experiments approach to successfully optimise a cell-free system</li>
      <li style="font-family: Rubik">- Designed, and began to construct, a variety of framework compatible systems, including a synthetic promoter library</li>
+
        <li style="font-family: Rubik">- Improved the BLANK plasmid for promoter screening</li>
      <li style="font-family: Rubik">- Determined optimal cell ratios from our <a href="https://2017.igem.org/Team:Newcastle/Model#sim">multicellular model</a></li>
+
        <li style="font-family: Rubik">- Expressed and characterised Sarcosine Oxidase, showing successful degradation of sarcosine to formaldehyde</li>
    </ul>
+
        <li style="font-family: Rubik">- Designed, and began to construct, a variety of framework compatible systems, including a synthetic promoter library</li>
 +
        <li style="font-family: Rubik">- Determined optimal cell ratios from our <a href="https://2017.igem.org/Team:Newcastle/Model#sim">multicellular model</a></li>
 +
      </ul>
 +
    </div>
 +
 
 +
 
 +
 
 
   </div>
 
   </div>
 +
 +
  
 
   </div>
 
   </div>

Revision as of 20:03, 1 November 2017

spacefill

Our Experimental Results

Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!


Key Achievements

A condensed list of our most notable results


  • - Designed a novel framework for biosensor development
  • - Proved that multicellular biosensors are able to co-ordinate responses to input molecules through a proof-of-concept IPTG responsive biosensor
  • - Successful characterisation of a transpose-based “stand-by switch” capable of producing eforRed in the “OFF” state, and C4 AHL in the “ON” state
  • - Used a Design of Experiments approach to successfully optimise a cell-free system
  • - Improved the BLANK plasmid for promoter screening
  • - Expressed and characterised Sarcosine Oxidase, showing successful degradation of sarcosine to formaldehyde
  • - Designed, and began to construct, a variety of framework compatible systems, including a synthetic promoter library
  • - Determined optimal cell ratios from our multicellular model