Difference between revisions of "Team:SDU-Denmark/test"

Line 9: Line 9:
  
  
  <div class="row" id="homeCover">          <!--Start of home cover -->
+
<div class="row" id="homeCover">          <!--Start of home cover -->
  
  </div>                                                              <!--End of home cover -->
+
</div>                                                              <!--End of home cover -->
  
  
  
  
  <div class="row" id="contentPage">          <!-- Start of home content -->
+
<div class="row" id="contentPage">          <!-- Start of home content -->
    <div class="col-sm-3"><div id="skimreadouter"><div id="skimreadinner"><div id="skimreadtext">skim-<br>read.</div></div></div></div>
+
  <div class="col-sm-3"><div id="skimreadouter"><div id="skimreadinner"><div id="skimreadtext">skim-<br>read.</div></div></div></div>
  
    <div class="col-sm-6" id="homeContent">
+
  <div class="col-sm-6" id="homeContent">
      <h1>SDU-Denmark</h1><hr>
+
    <h1>SDU-Denmark</h1><hr>
 
            
 
            
        <p><span id="notHighlighted">Welcome to the wiki for the 2017 iGEM team of the University of Southern Denmark! Our project this year focuses on green energy through bioelectricity in the form of </span><span id="highlighted">a bacterial solar battery</span><span id="notHighlighted">. This device will be constructed to contain two cultures of genetically engineered <i>Escherichia coli</i> (<i>E. coli</i>). A photosynthesising <i>E. coli</i> will produce a carbon source in the form of </span><span id="highlighted">cellulose, by fixating carbon dioxide</span><span id="notHighlighted"> through Calvin Cycle and harvesting energy from sunlight. When switched on, the second <i>E. coli</i> will break down the formed cellulose by secreting cellulase through the cellulase secretion system. Once cellulose is broken down, cellobiose can enter the second <i>E. coli</i> and be broken down to glucose by introduction of periplasmic beta-glucosidase. Electrons will then be harvested from the </span><span id="highlighted">anaerobic glycolysis of glucose to facilitate an electrical current</span><span id="notHighlighted">. The electron transfer will be mediated by bacterial nanowires retrieved from <i>Geobacter sulfurreducens</I>.</span></p>
+
    <p><span id="notHighlighted">Welcome to the wiki for the 2017 iGEM team of the University of Southern Denmark! Our project this year focuses on green energy through bioelectricity in the form of </span><span id="highlighted">a bacterial solar battery</span><span id="notHighlighted">. This device will be constructed to contain two cultures of genetically engineered <i>Escherichia coli</i> (<i>E. coli</i>). A photosynthesising <i>E. coli</i> will produce a carbon source in the form of </span><span id="highlighted">cellulose, by fixating carbon dioxide</span><span id="notHighlighted"> through Calvin Cycle and harvesting energy from sunlight. When switched on, the second <i>E. coli</i> will break down the formed cellulose by secreting cellulase through the cellulase secretion system. Once cellulose is broken down, cellobiose can enter the second <i>E. coli</i> and be broken down to glucose by introduction of periplasmic beta-glucosidase. Electrons will then be harvested from the </span><span id="highlighted">anaerobic glycolysis of glucose to facilitate an electrical current</span><span id="notHighlighted">. The electron transfer will be mediated by bacterial nanowires retrieved from <i>Geobacter sulfurreducens</I>.</span></p>
  
      <p><span id="notHighlighted">Our device will be </span><span id="highlighted">designed to resemble a leaf</span><span id="notHighlighted">, in which way it can contribute to a </span><span id="highlighted">better city ambience</span><span id="notHighlighted"> when integrated into an urban environment. For the implementation of our device in an urban environment, we will </span><span id="highlighted">collaborate with city planning experts</span><span id="notHighlighted">, with focus of implementation of our device into our home city, Odense. This way, our device can be optimised to reach its full potential and thereby fulfill the needs for a greener future. </span></p>
+
  <p><span id="notHighlighted">Our device will be </span><span id="highlighted">designed to resemble a leaf</span><span id="notHighlighted">, in which way it can contribute to a </span><span id="highlighted">better city ambience</span><span id="notHighlighted"> when integrated into an urban environment. For the implementation of our device in an urban environment, we will </span><span id="highlighted">collaborate with city planning experts</span><span id="notHighlighted">, with focus of implementation of our device into our home city, Odense. This way, our device can be optimised to reach its full potential and thereby fulfill the needs for a greener future. </span></p>
  
      <p><span id="notHighlighted">Plant leaves do photosynthesis and are full of bacteria. Our leaf is just like that - except it also powers your phone!</span></p>
+
  <p><span id="notHighlighted">Plant leaves do photosynthesis and are full of bacteria. Our leaf is just like that - except it also powers your phone!</span></p>
  
    </div>
+
  </div>
  
    <div class="col-sm-3"></div>
+
  <div class="col-sm-3"></div>
  </div>                                                          <!-- End home content -->
+
</div>                                                          <!-- End home content -->
  
  
  
  
  <div class="row" id="teamCover">          <!--Start of team cover -->
+
<div class="row" id="teamCover">          <!--Start of team cover -->
  
  </div>                                                              <!--End of team cover -->
+
</div>                                                              <!--End of team cover -->
  
  
Line 44: Line 44:
  
  
  <div class="row" id="teamPage">          <!-- Start of team content -->
+
<div class="row" id="teamPage">          <!-- Start of team content -->
 +
 
 +
<div class="row" id="teamRow1">
 +
    <div class="col-sm-1"></div>
 +
    <div class="col-sm-1"></div>
 +
    <div class="col-sm-1" id="insertName"></div>
 +
    <div class="col-sm-1"></div>
 +
 
 +
    <div class="col-sm-4"></div>
 +
 
 +
    <div class="col-sm-4"></div>
 +
</div>
 +
 
 +
 
 +
<div class="row" id="teamRow2">
 
     <div class="col-sm-4"></div>
 
     <div class="col-sm-4"></div>
  
     <div class="col-sm-4" id="teamCenter"></div>
+
     <div class="col-sm-4" id="teamCenter"><h1>hello.</h1><p>Welcome to our team page, this is where you will get to know us personally.<br>Click any team member and he/she will gently present themselves.</div>
  
 
     <div class="col-sm-4"></div>
 
     <div class="col-sm-4"></div>
  </div>                                                          <!-- End team content -->
+
</div>
 +
</div>                                                          <!-- End team content -->
  
  

Revision as of 07:48, 28 July 2017

skim-
read.

SDU-Denmark


Welcome to the wiki for the 2017 iGEM team of the University of Southern Denmark! Our project this year focuses on green energy through bioelectricity in the form of a bacterial solar battery. This device will be constructed to contain two cultures of genetically engineered Escherichia coli (E. coli). A photosynthesising E. coli will produce a carbon source in the form of cellulose, by fixating carbon dioxide through Calvin Cycle and harvesting energy from sunlight. When switched on, the second E. coli will break down the formed cellulose by secreting cellulase through the cellulase secretion system. Once cellulose is broken down, cellobiose can enter the second E. coli and be broken down to glucose by introduction of periplasmic beta-glucosidase. Electrons will then be harvested from the anaerobic glycolysis of glucose to facilitate an electrical current. The electron transfer will be mediated by bacterial nanowires retrieved from Geobacter sulfurreducens.

Our device will be designed to resemble a leaf, in which way it can contribute to a better city ambience when integrated into an urban environment. For the implementation of our device in an urban environment, we will collaborate with city planning experts, with focus of implementation of our device into our home city, Odense. This way, our device can be optimised to reach its full potential and thereby fulfill the needs for a greener future.

Plant leaves do photosynthesis and are full of bacteria. Our leaf is just like that - except it also powers your phone!

hello.

Welcome to our team page, this is where you will get to know us personally.
Click any team member and he/she will gently present themselves.