Difference between revisions of "Team:Heidelberg/internal tools"

Line 117: Line 117:
 
<!-- Assets -->
 
<!-- Assets -->
 
<link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-grid-3.0.min.css" type="text/css" media="all" />
 
<link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-grid-3.0.min.css" type="text/css" media="all" />
<link rel="stylesheet" type="text/css"
+
 
href="https://2017.igem.org/Template:Heidelberg/general/CSS?action=raw&ctype=text/css" />
+
 
<link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-zoom-1.0.min.css" type="text/css" media="all" />
 
<link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-zoom-1.0.min.css" type="text/css" media="all" />
 
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Josefin+Sans:300,400|Roboto:300,400,500">
 
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Josefin+Sans:300,400|Roboto:300,400,500">
Line 241: Line 240:
 
     position: relative;
 
     position: relative;
 
     background-color: #393939;
 
     background-color: #393939;
}
 
 
#footer-sec > div > div > div > h4,p {
 
    color: white;
 
    padding-bottom: 2px;
 
 
}
 
}
 
#footer-sec > div > div > div > h4 {
 
#footer-sec > div > div > div > h4 {
    padding-bottom: 10px;
+
color: white;
 
}
 
}
#footer-sec > div > div > div > li,a,p{
+
#footer-sec > div > div > div > li > a {
    color: grey;
+
color: grey;
 +
font-size: 16px;
 +
}
 +
#footer-sec > div > div > div > p {
 +
color: grey;
 +
font-size: 16px;
 +
}
 +
 
 +
#footer-sec > div > div > div > li {
 +
color: grey;
 +
font-size: 16px;
 +
}
 +
#footer-sec > div > div > div  > li {
 
     list-style: none;
 
     list-style: none;
     padding-bottom: 10px;
+
     padding-bottom: 2px;
 
}
 
}
  
Line 263: Line 269:
 
     transition: color 1s;
 
     transition: color 1s;
 
}
 
}
 
+
#facebook, #twitter {
 +
color: grey
 +
}
 
#facebook:hover,#twitter:hover {
 
#facebook:hover,#twitter:hover {
 
     color: white;
 
     color: white;
Line 3,743: Line 3,751:
 
                   
 
                   
  
<div style="padding-top: 100px;padding-bottom:105px; background-color:white;">
+
<div style="background-color:white;">
 
<div class="t-container">
 
<div class="t-container">
 
<div class="t-col t-col_12">
 
<div class="t-col t-col_12">
                                                         <div class="container-fluid tex" style="margin-top: 100px; padding-bottom: 30px;">
+
                                                         <div class="container-fluid" style="margin-top: 10px; padding-bottom: 30px;">
 
                                                                 <h1>Internal Tools</h1>
 
                                                                 <h1>Internal Tools</h1>
 
                                                                     <h2>Number of mutations and mutated sequences</h2>
 
                                                                     <h2>Number of mutations and mutated sequences</h2>

Revision as of 13:16, 18 September 2017

WikitemplateA home - 2014.igem.org

 

WikitemplateA home

From 2014.igem.org

Internal Tools

Number of mutations and mutated sequences

Expected number of mutations in a single sequence: $$p_{m} = \frac{N_{mutations}}{L_{Sequence}} = N_{generations} * r_{mutation} = t_{total} * \Phi * r_{mutation}$$

The expected share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is the probability that \(L_{sequence}\) basepairs stay unchanged when \(\frac{N_{mutations}}{L_{Sequence}}\) mutations are expected: $$p_{M} = \frac{N_{mutated}}{N_{Sequences}} = 1 - p(N_{mutations}=0) = 1 - (1-p_{m})^{L_{Sequence}} $$

With this equation we can also calculate the number of sequences \(N_{Sequences}\) that have to be sequenced in order to find a mutated one with a probability of \(p(N_{mutated} > 0)\). $$ N_{Sequences} = \frac{p(N_{mutated} > 0)}{p_{M}} $$

The probability to find at least one mutated sequence under the given conditions is $$p(N_{mutated}>0) = 1 - (1-p_{M})^{N_{sequences}}$$ which gives $$N_{Sequences} = \frac{ln(1-p(N_{mutated}>0))}{ln(1-p_{M})}$$

Set \(\Phi\) to zero to use the number of generations for the calculation. If \(\Phi\) and the number of generations are given, \(\Phi\) is used.

Consider \(L_{Sequence}\) as the number of basepairs that is expected to be mutated. If half of the sequence you are interested in, is highly conserved choose a lower \(L_{Sequence}\).

Get your mutations


\(p_{m} =\) %(bp/bp).

\(N_{mutations} =\) bp per sequence.

The share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is \(p_{M}=\) % of sequences