Lukas Adam (Talk | contribs) |
Lukas Adam (Talk | contribs) |
||
Line 117: | Line 117: | ||
<!-- Assets --> | <!-- Assets --> | ||
<link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-grid-3.0.min.css" type="text/css" media="all" /> | <link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-grid-3.0.min.css" type="text/css" media="all" /> | ||
− | + | ||
− | + | ||
<link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-zoom-1.0.min.css" type="text/css" media="all" /> | <link rel="stylesheet" href="http://static.tildacdn.com/css/tilda-zoom-1.0.min.css" type="text/css" media="all" /> | ||
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Josefin+Sans:300,400|Roboto:300,400,500"> | <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Josefin+Sans:300,400|Roboto:300,400,500"> | ||
Line 241: | Line 240: | ||
position: relative; | position: relative; | ||
background-color: #393939; | background-color: #393939; | ||
− | |||
− | |||
− | |||
− | |||
− | |||
} | } | ||
#footer-sec > div > div > div > h4 { | #footer-sec > div > div > div > h4 { | ||
− | + | color: white; | |
} | } | ||
− | #footer-sec > div > div > div | + | #footer-sec > div > div > div > li > a { |
− | + | color: grey; | |
+ | font-size: 16px; | ||
+ | } | ||
+ | #footer-sec > div > div > div > p { | ||
+ | color: grey; | ||
+ | font-size: 16px; | ||
+ | } | ||
+ | |||
+ | #footer-sec > div > div > div > li { | ||
+ | color: grey; | ||
+ | font-size: 16px; | ||
+ | } | ||
+ | #footer-sec > div > div > div > li { | ||
list-style: none; | list-style: none; | ||
− | padding-bottom: | + | padding-bottom: 2px; |
} | } | ||
Line 263: | Line 269: | ||
transition: color 1s; | transition: color 1s; | ||
} | } | ||
− | + | #facebook, #twitter { | |
+ | color: grey | ||
+ | } | ||
#facebook:hover,#twitter:hover { | #facebook:hover,#twitter:hover { | ||
color: white; | color: white; | ||
Line 3,743: | Line 3,751: | ||
− | <div style=" | + | <div style="background-color:white;"> |
<div class="t-container"> | <div class="t-container"> | ||
<div class="t-col t-col_12"> | <div class="t-col t-col_12"> | ||
− | <div class="container-fluid | + | <div class="container-fluid" style="margin-top: 10px; padding-bottom: 30px;"> |
<h1>Internal Tools</h1> | <h1>Internal Tools</h1> | ||
<h2>Number of mutations and mutated sequences</h2> | <h2>Number of mutations and mutated sequences</h2> |
Revision as of 13:16, 18 September 2017
WikitemplateA home
From 2014.igem.org
Internal Tools
Number of mutations and mutated sequences
Expected number of mutations in a single sequence: $$p_{m} = \frac{N_{mutations}}{L_{Sequence}} = N_{generations} * r_{mutation} = t_{total} * \Phi * r_{mutation}$$
The expected share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is the probability that \(L_{sequence}\) basepairs stay unchanged when \(\frac{N_{mutations}}{L_{Sequence}}\) mutations are expected: $$p_{M} = \frac{N_{mutated}}{N_{Sequences}} = 1 - p(N_{mutations}=0) = 1 - (1-p_{m})^{L_{Sequence}} $$
With this equation we can also calculate the number of sequences \(N_{Sequences}\) that have to be sequenced in order to find a mutated one with a probability of \(p(N_{mutated} > 0)\). $$ N_{Sequences} = \frac{p(N_{mutated} > 0)}{p_{M}} $$
The probability to find at least one mutated sequence under the given conditions is $$p(N_{mutated}>0) = 1 - (1-p_{M})^{N_{sequences}}$$ which gives $$N_{Sequences} = \frac{ln(1-p(N_{mutated}>0))}{ln(1-p_{M})}$$
Set \(\Phi\) to zero to use the number of generations for the calculation. If \(\Phi\) and the number of generations are given, \(\Phi\) is used.
Consider \(L_{Sequence}\) as the number of basepairs that is expected to be mutated. If half of the sequence you are interested in, is highly conserved choose a lower \(L_{Sequence}\).
\(p_{m} =\) %(bp/bp).
\(N_{mutations} =\) bp per sequence.
The share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is \(p_{M}=\) % of sequences