Difference between revisions of "Team:Heidelberg/internal tools"

Line 388: Line 388:
  
 
#container1 p {
 
#container1 p {
 +
color: #393939;
 +
font-size: 20px;
 +
font-family: 'Josefin Sans', sans-serif;
 +
text-align: justify;
 +
}
 +
#container2 h1 { 
 +
color:#393939;
 +
font-family: 'Josefin Sans', sans-serif;
 +
font-size: 58px;
 +
font-weight: 300;
 +
line-height: 56px;
 +
opacity: 0.9;
 +
text-align:center;
 +
}
 +
 +
#container2 p {
 
color: #393939;
 
color: #393939;
 
font-size: 20px;
 
font-size: 20px;
Line 550: Line 566:
 
                                                       </section>  
 
                                                       </section>  
 
                                                         </form>
 
                                                         </form>
                                                        
+
                                                       </div>
 +
                                                        <div class="container-fluid" style="margin-top: 10px;" id="container2">
 
                                                                  
 
                                                                  
 
                                                                     <p id="number_generations"></p>
 
                                                                     <p id="number_generations"></p>

Revision as of 10:10, 19 September 2017

WikitemplateA home - 2014.igem.org

 

WikitemplateA home

From 2014.igem.org

Internal Tools

Number of mutations and mutated sequences

Expected number of mutations in a single sequence: $$p_{m} = \frac{N_{mutations}}{L_{Sequence}} = N_{generations} * r_{mutation} = t_{total} * \Phi * r_{mutation}$$

The expected share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is the probability that \(L_{sequence}\) basepairs stay unchanged when \(\frac{N_{mutations}}{L_{Sequence}}\) mutations are expected: $$p_{M} = \frac{N_{mutated}}{N_{Sequences}} = 1 - p(N_{mutations}=0) = 1 - (1-p_{m})^{L_{Sequence}} $$

With this equation we can also calculate the number of sequences \(N_{Sequences}\) that have to be sequenced in order to find a mutated one with a probability of \(p(N_{mutated} > 0)\). $$ N_{Sequences} = \frac{p(N_{mutated} > 0)}{p_{M}} $$

The probability to find at least one mutated sequence under the given conditions is $$p(N_{mutated}>0) = 1 - (1-p_{M})^{N_{sequences}}$$ which gives $$N_{Sequences} = \frac{ln(1-p(N_{mutated}>0))}{ln(1-p_{M})}$$

Set \(\Phi\) to zero to use the number of generations for the calculation. If \(\Phi\) and the number of generations are given, \(\Phi\) is used.

Consider \(L_{Sequence}\) as the number of basepairs that is expected to be mutated. If half of the sequence you are interested in, is highly conserved choose a lower \(L_{Sequence}\).

\(p_{m} =\) %(bp/bp).

\(N_{mutations} =\) bp per sequence.

The share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is \(p_{M}=\) % of sequences

Get your mutations

\(p_{m} =\) %(bp/bp).

\(N_{mutations} =\) bp per sequence.

The share of sequences that shows at least one mutation in \(L_{Sequence}\) bp is \(p_{M}=\) % of sequences