Difference between revisions of "Team:KUAS Korea/Collaborations"

Line 61: Line 61:
  
 
<div class="container-fluid page-heading" style="background-image: url(https://static.igem.org/mediawiki/2016/9/95/20160709_170210.jpg)">
 
<div class="container-fluid page-heading" style="background-image: url(https://static.igem.org/mediawiki/2016/9/95/20160709_170210.jpg)">
     <h3>Collaborations</h3><br><br>
+
     <h3>Collaborations</h3>
  
 
+
</div>
</div><br><br><br>
+
 
<div class="container-fluid">
 
<div class="container-fluid">
 
     <div class="row">
 
     <div class="row">
         <div class="col-md-10 col-md-offset-1">
+
         <div class="col-md-9">
<h2>Protocols for molecular biology</h2>
+
             <div class="section">
             <div class="section" id="">
+
 
                 <div class="slim">
 
                 <div class="slim">
 +
                    <h2 id="colla">Collaborations</h2><hr>
 +
<div class="image image-full">
 +
<img src="https://static.igem.org/mediawiki/2016/9/9a/Korea_U_Seoul_colla_main.jpg">
 +
</div>
 +
<p><font size=4><strong><strong>Korea_U_Seoul</strong></strong> had collaborated with ‘<a href="https://2016.igem.org/Team:KoreaSonyeodul">KoreaSonyeodul</a> team from Hankuk Foreign Language High School. <strong>‘<strong>KoreaSonyeodul</strong>’</strong> is a team made up with 7 high school girls, and this year is their first time participating iGEM. We, <strong><strong>Korea_U_Seoul</strong></strong> team has participated iGEM since 2009, therefore our persistent experience on iGEM and synthetic biology-related activities could help them starting things up, through this collaboration.</font></p><br>
 +
<p><font size=4>The collaboration was mainly proceeded in two categories: <a href="#mentor">mentoring new high school team</a>, and <a href="#exp">experimental exchanges</a>. </font></p>
 +
<hr><br>
  
<br><br>
 
<h4>1. <em>E.coli</em> TSS competent cells</h4><br>
 
  
<ol>Day1 :
+
<h4 id="exp"> 1. ColegioFDR_Peru </h4>
<li>Prepare 20ml of TSS buffer and 200ml of LB (Both must be autoclaved)</li>
+
<div class="image image-full">
<li>Autoclave centrifuge pellets</li>
+
<img src="https://static.igem.org/mediawiki/2016/7/71/Korea_U_Seoul_colla_exp.jpg">
<li>Chill the centrifuge pellet and TSS buffer in 4C refrigerator.. </li>
+
</div>
<li>Grow your desired strain of <em>E.coli</em> in 3ml LB overnight. </li>
+
<p><font size=4>The members of <strong>KoreaSonyeodul</strong> came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission. </font></p>
</ol><p></p>
+
<ol>Day2 : <li>Dilute 2ml of the culture in 200ml LB and grow till the OD600 reaches 0.4-0.5.</li>
+
            <li>Incubate the cells on ice for few hours.</li>
+
            <li>Centrifuge the cells at 3500rpm, 4C for 15minutes.</li>
+
            <li>Remove supernatant and resuspend the cells in chilled 20ml TSS buffer. </li>
+
            <li>Aliquot the 120 ul of cells in pre-chilled 1.5ml tubes and freeze the tube in liquid nitrogen. </li>
+
            <li>Store at -80C</li>
+
</ol><br><br><br>
+
  
<h4>2. TSS Buffer</h4> <br>
+
<h4 id="exp"> 2. Manchester </h4>
 +
<div class="image image-full">
 +
<img src="https://static.igem.org/mediawiki/2016/7/71/Korea_U_Seoul_colla_exp.jpg">
 +
</div>
 +
<p><font size=4>The members of <strong>KoreaSonyeodul</strong> came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission. </font></p>
  
<li>PEG 10% (wt/vol) : 2g</li>
 
<li>DMSO 5% (vol/vol) : 1ml</li>
 
<li>20mM MgCl2 : 0.08g</li>
 
<li>in 20ml LB</li>
 
<li>autoclave and chill</li>
 
<br><br><br>
 
  
<h4>3. Chemical transformation</h4><br>
+
<h4 id="exp"> 3. Gifu </h4>
<ol>  
+
<div class="image image-full">
<li>Thaw competent cells on ice.</li>
+
<img src="https://static.igem.org/mediawiki/2016/7/71/Korea_U_Seoul_colla_exp.jpg">
<li>Add 1ul to 5ul of DNA into 50ul of competent cells and gently mix.</li>
+
</div>
<li>Incubate on ice for 10 to 20 minutes.</li>
+
<p><font size=4>The members of <strong>KoreaSonyeodul</strong> came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission. </font></p>
<li>Heat shock at 42C for 1 minute.</li>
+
<li>Incubate on ice for 5 minutes.</li>
+
<li>Add 200ul of LB and mix thorougly.</li>
+
<li>Grow in 37C shaking incubator for 1hour.</li>
+
<li>Plate the cells on a agar plate with appropriate antibiotics.</li>
+
<li>Incubate plates at 37C overnight.</li>
+
</ol>
+
  
  
<br><br><br>
+
<h4 id="exp"> 4. NCTU Formosa </h4>
 
+
 
+
 
+
 
+
 
+
<h4>4. Diaphorase assay</h4><br>
+
<ol>
+
<li>Prepare autoclaved D.W, 10mM NADH, 20mM DCPIP</li>
+
<li>Prepare your sample and controls. Purified enzymes are recommended as the sample since crude bacteria cell extract could already have reducing agents that can reduce DCPIP.</li>
+
 
+
<li><table>
+
  <tr>
+
    <th>Purified enzymes</th>
+
    <th>Xul (Depends on the concentration of your purified enzymes)</th>
+
  </tr>
+
  <tr>
+
    <td>20mM DCPIP</td>
+
    <td>1ul</td>
+
  </tr>
+
  <tr>
+
    <td>10mM NADH</td>
+
    <td>2ul</td>
+
  </tr>
+
  <tr>
+
    <td>D.W</td>
+
    <td>17-X</td>
+
  </tr>
+
  <tr>
+
    <td>Total</td>
+
    <td>20ul</td>
+
  </tr>
+
</table></li>
+
<li>Check whether the colour changes.</li>
+
</ol>
+
<br><br><br>
+
 
+
 
+
 
+
<h4>5. Induction (IPTG. L-Arabionose)</h4><br>
+
 
+
<ol>Day 1 : <li>Prepare 200ml of LB and autoclave.</li>
+
            <li>Grow your desired strain of <em>E.coli</em> in 3ml LB overnight.</li>
+
</ol>
+
<ol>     
+
Day 2 : <li>Dilute 2ml of the culture in 200ml LB and grow till the OD600 reaches 0.5~0.8.</li>
+
          <li>Put your desired inducing agent into the 200ml culture.
+
                (Final concentration : IPTG - 0.5mM, L-arabionose - 0.5%)</li>
+
          <li>Incubate the 200ml culture in 20C overnight (12hours)</li>
+
</ol>
+
<br><br><br>
+
 
+
 
+
 
+
<h4>6. Enzyme purification (Mini scale)</h4><br>
+
 
+
<p><font size=4>We followed the protocols of NI-NTA Spin Kit handbook.</font></p>
+
 
+
<p><font size=4>(https://www.qiagen.com/cn/resources/resourcedetail?id=3fc8c76d-6d21-4887-9bf8-f35f78fcc2f2&lang=en)</font></p>
+
 
+
 
+
 
+
<br><br>
+
 
+
 
+
<h2>Protocols for battery device</h2>
+
 
<div class="image image-full">
 
<div class="image image-full">
<img src="https://static.igem.org/mediawiki/2016/b/b8/20160911_191655.jpg">
+
<img src="https://static.igem.org/mediawiki/2016/7/71/Korea_U_Seoul_colla_exp.jpg">
 
</div>
 
</div>
                        <div class="image image-full">
+
<p><font size=4>The members of <strong>KoreaSonyeodul</strong> came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission. </font></p>
                            <img src="https://static.igem.org/mediawiki/2016/c/c2/Korea_U_Seoul_figure2.jpeg">
+
                        </div>
+
 
+
 
+
<h4>1. Battery device design</h4><br>
+
 
+
 
+
      <p><font size=4>① Cut 15mL tube into enough length(about 8cm).<br>
+
      ② Make a hole at 50mL tube's cap about ①'s diameter. Make 2 of it.<br>
+
      ③ Pierce a very small hole for wire next to ②'s hole.<br>
+
  ④ Connect electrode and wire with silicon waterproof adhesive.<br>
+
             (We used 2cm*5cm carbon paper with coated back)<br>
+
    ⑤ Attach ①, ③, ④ with silicon adhesive. You should paste it very well. <br>
+
           Two 50mL tube's cap should be arranged opposite. 50mL tubes will be linked from  outside.<br>
+
    ⑥ Prepare catholyte and anolyte at 50mL tube each. <br>
+
      ⑦ Add 175mM Sodium Chloride and Agar(15g/L) in DW, and autoclave it. <br>
+
           Next, put a lid on ①'s 15mL tube and fill it with salt bridge solution.<br>
+
⑧When salt bridge solidified in enough time, connect ⑤(body of device) and ⑥(catholyte and anolyte).<br>
+
      ⑨ Link ⑧ into voltage measuring equipment.<br>
+
      ⑩ After using the device, wash it softly and autoclave it.</font></p>
+
 
+
<br>
+
<br>
+
 
+
 
+
<h4>2. Prepare catholyte and anolyte</h4><br>
+
<p> <font size=4>      ① Make a pure culture of bacteria(MR-1, BW25113, BL21, etc) in LB solid medium  with antibiotics. You can use ampicillin for culturing <em>Shewanella oneidensis</em> MR-1.<br>
+
      ② Make a seed culture with 4mL LB culture medium from single colony, add  antibiotics, and culture 12 hours. <br>
+
      ③ Insert 1mL of seed culture, antibiotics in 100mL LB. Culture 24 Hours.<br>
+
      ④ Put the cell down using centrifuge(3,000 RPM, 20 minutes, and 4°C).<br>
+
      ⑤ If you need cell disruption, use sonicator(ultrasonic processor). Turn on 2 second,  turn off 10 second for 1 minute. Total time is 4 minutes. <br>
+
      ⑥ Add mediator(30μM methylene blue) and substrate. It is convenient if you prepare  mediator as a stock solution.<br>
+
      ⑦ Put 30mM Sodium ferricyanide(electron acceptor) in anolyte.</font><br>
+
</p>
+
<br><br>
+
 
+
<h4>3. Electricity analysis</h4><br>
+
<p> <font size=4>      ① We measured voltage every single minute by an electric measuring circuit using  potentiometer(1,000 ohm) and Keithley Digital Multimeter <br>
+
      ② Therefore, we can calculate current with Ohm's law(V=IR).<br>
+
      ③ Now we can get electric power with P=VI.<br>
+
      ④ So we can draw voltage, current, and electric power graph each.<br>
+
</font>
+
 
+
 
+
 
+
</p>
+
 
+
 
+
  
</div></div></div></div></div>
 
</html>
 
  
  
 
</html>
 
</html>
 
{{:Team:KUAS_Korea/Templates/Sponsors}}
 
{{:Team:KUAS_Korea/Templates/Sponsors}}

Revision as of 04:08, 7 October 2017

Collaborations

Collaborations


Korea_U_Seoul had collaborated with ‘KoreaSonyeodul team from Hankuk Foreign Language High School. KoreaSonyeodul is a team made up with 7 high school girls, and this year is their first time participating iGEM. We, Korea_U_Seoul team has participated iGEM since 2009, therefore our persistent experience on iGEM and synthetic biology-related activities could help them starting things up, through this collaboration.


The collaboration was mainly proceeded in two categories: mentoring new high school team, and experimental exchanges.



1. ColegioFDR_Peru

The members of KoreaSonyeodul came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission.

2. Manchester

The members of KoreaSonyeodul came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission.

3. Gifu

The members of KoreaSonyeodul came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission.

4. NCTU Formosa

The members of KoreaSonyeodul came to our lab to look around and have a meeting with our PI. They consulted us about their project, and we helped them to schedule their experiments. Since they did not have their own lab, they shared the lab with us. They never had any experience with lab work such as cloning, so we taught them how things are done. We taught and helped with their part cloning(Restriction enzyme cloning) and LIC cloning. We also helped the with their part registration and submission.