Difference between revisions of "Team:Aix-Marseille/Experiments/Protocols"

(Preparation of Competent Bacterial cells)
(Transformation of bacterial cells with plasmid/ligation)
Line 154: Line 154:
 
===Transformation of bacterial cells with plasmid/ligation===
 
===Transformation of bacterial cells with plasmid/ligation===
 
#20 ng of DNA are transferred in eppendorf tube, excess are conserved at -20˚C
 
#20 ng of DNA are transferred in eppendorf tube, excess are conserved at -20˚C
#Add 100 µL of competent bacterial cells
+
#Add 100 µL(50 µL) of competent bacterial cells
 
#Put on ice for 20 minutes
 
#Put on ice for 20 minutes
 
#Put tubes in thermomixer at 42˚C for 45 seconds
 
#Put tubes in thermomixer at 42˚C for 45 seconds
 
#Put on ice for 5 minutes  
 
#Put on ice for 5 minutes  
#Add 450 µL of LB
+
#Add 450 µL (900 µL) of LB
 
#Incubate tube for 1 hour at 37˚C  
 
#Incubate tube for 1 hour at 37˚C  
 
#Centrifuge for 5 minutes at 5000rpm (normal centrifuge will work)
 
#Centrifuge for 5 minutes at 5000rpm (normal centrifuge will work)
#Remove 400 µl of supernatant
+
#Remove 400 µl(850 µL) of supernatant
 
#Re-suspend pellet in the 150 µL of remaining medium pipet up-down
 
#Re-suspend pellet in the 150 µL of remaining medium pipet up-down
 
#Spread total volume on petri dish with the appropriate antibiotic
 
#Spread total volume on petri dish with the appropriate antibiotic

Revision as of 19:23, 13 June 2017

{{{title}}}

{{{toc}}}

Protocols

Preparation of competent Bacterial cells

Preparation of the Bacterial culture

  1. Recuperate the overnight bacterial culture
  2. Determine the OD600 in a 1 mL Tank Spectro, dilute a 100µl of culture in 900µl of distilled LB
  3. In 1L Erlenmeyer add 200 ml of LB and an appropriate volume of culture to have an OD600 = 0.1
  4. Put the Erlenmeyer in an incubator for about an hour at 37˚C.
  5. Test the OD600 for the new culture
  6. The OD600 should be between 0.4 and 0.6

All the handling done in a 15cm radius of an open flame for optimal sterility

Preparation of Buffer Tbf1 and Tbf2

Tbf1 buffer Total volume 80mL
KAc 1M 2.4 mL
MnCl2 0.5M 8 mL
KCl 1M 8 mL
CaCl2 0.1M 8 mL
GlY 80% 15mL
H2O 38.6 mL
Tbf2 buffer Total volume 8 mL
NaMOPS 0.2 M 400 µL
CaCl2 0.1 M 6 mL
Gly 80% 1.5 mL
KCl 1 M 80 µL
H2O 500 µL

Some solution aren’t available directly and are prepared by dissolving the solid compound

Volume (mL) Mass (g) Molecular weight (g/mol)
MnCl2 0.5 M 200 19.791 197.91
KCl 1 M 200 17.91 74.55
NaMOPS 0.2 M 50 2.0926 209.26
KAc 1M 50 4.9 98.15

Sterilize the flask prepared after weighing in an autoclave. When preparing Tbf1 and Tbf2 should be in proximity of an open flame

Preparation of Competent Bacterial cells

  1. Transfer the Bacterial culture in 50 ml Falcon tubes
  2. Centrifuge for 10 minutes at 3500 rpm in cold
  3. Remove the supernatant then re-suspend the pellet in 20 ml of Tbf1 for each falcon tube
  4. Poll in all bacterial culture in two Falcon tubes with 40 ml each
  5. Centrifuge for 5 minutes at 3500 rpm in cold
  6. Remove the supernatant then re-suspend the pellet in 4 ml of Tbf2 for each falcon tube
  7. Allocate 220 µl of competent Bacterial cells in each eppendorf tube
  8. Instant freeze the eppendorf tubes in liquid nitrogen
  9. Conserve the tubes at -80˚C

NOTE: all handling done in a cold room. To re-suspend the pellet a hard jerking action applied on the tube. Alternatively, put on wheel for 10 minute.

Transformation protocol

Sensitivity test of competent bacterial cells

  1. Heat up LB-agar in micro oven at 300Watt for 19 minutes for 400 mL of LB-agar loosen cap before heating to let steam out
  2. Transfer 80 mL of LB-agar in to Erlenmeyer one for every antibiotic
  3. Pour 20 mL and spread the LB-agar in petri dishes, let it dry out
  4. Prepare petri dishes:

25µL of competent strain spread with glass beads in all four antibiotic and one without antibiotic as negative test

Antibiotic stock Desired concentration Volume of antibiotic per mL of LB-agar Volume in Erlenmeyer
Ampicillin
25 mg/mL
100 µg/mL 4 µL/mL 320 µL
Kanamycin
10 mg/mL
50 µg/mL 5 µL/mL 400 µL
Tetracycline
15 mg/mL
15 µg/mL 1 µL/mL 80 µL
Chloramphenicol
30 mg/mL
50 µg/mL 1.6 µl/mL 128 µL

Handling is done near an open flame, sterile environment

Preparation of DNA material from iGEM kit

  1. Pierce plate at the desired location
  2. Hydrate by injecting 10µL of ddH2O
  3. Let it soak for 5 minutes until red coloration is highly visible
  4. pipet up-down to homogenize the solution
  5. Transfer the solution into an eppendorf tube set it on ice

No special conditions needed when manipulating just respect sterility

Transformation of bacterial cells with plasmid/ligation

  1. 20 ng of DNA are transferred in eppendorf tube, excess are conserved at -20˚C
  2. Add 100 µL(50 µL) of competent bacterial cells
  3. Put on ice for 20 minutes
  4. Put tubes in thermomixer at 42˚C for 45 seconds
  5. Put on ice for 5 minutes
  6. Add 450 µL (900 µL) of LB
  7. Incubate tube for 1 hour at 37˚C
  8. Centrifuge for 5 minutes at 5000rpm (normal centrifuge will work)
  9. Remove 400 µl(850 µL) of supernatant
  10. Re-suspend pellet in the 150 µL of remaining medium pipet up-down
  11. Spread total volume on petri dish with the appropriate antibiotic
  12. Put petri dishes in an incubator overnight at 37˚C

For a negative control repeat procedure without adding plasmid

Handling is done near an open flame, sterile environment

One-step sequence and ligation-independent cloning (SLIC)

Procedures

1. Digest vector with restriction enzyme(s) overnight, and purify the linearized vector with a commercial PCR purification kit. Elute the DNA with elution buffer or 10mM TrisCl, pH 8.0-8.5. Do not elute the DNA with water or TE. Measure the concentration of the vector.

2. Amplify your gene pf interest by PCR using primer with ≥ 15 mer homology extension to the linearized vector end. We usually use 15bp homology for single fragment cloning, and 20 bp homology for multiple fragment cloning. Purify the linearized vector with a commercial PCR purification kit. Elute the DNA with elution buffer or 10 mM TrisCl, pH 8.0-8.5. Do not elute the DNA with water or TE. Measure the concentration of the insert(s).

3 .Mix the linearized vector and insert at a molar ratio of 1:2 in a 1.5 ml tube. An example is shown as follows. (Vector to insert molar ratio of 1:1 to 1:7 works well, but we usually use 1:2 for single fragment cloning 1:2:2 for multiple fragments cloning. An example of 3 fragment cloning is shown below with vector: insert 1: insert 2 molar ratio is 1:2:2 as shown

Stock concentration Volume added Final concentration
Lineaeized Vector (eg, 5Kb) 100 ng/µL 1 µL 10 ng/µL
Insert 1 (PCR product eg, 1kb) 40 ng/µL 1 µL 4 ng/µL
Insert 2 (PCR product eg, 1kb) 40 ng/µL 1 µL 4 ng/µL
10X BSA 1 µL 1X
10X NEB Buffer 2 1 µL 1X
H2O Up to 10 µL

4 .Add 0.2 µL of T4 DNA polymerase (3 U/µL,NEB) to the mixture and incubate at room temperature for 2.5 min. we found that 0.5µL(1.5 U) of T4 DNA polymerase gives the best result, But 0.2 µL gives more than sufficient number of colonies.

5 . Put the reaction mixture on ice immediately to stop the reaction and incubate on ice for 10 min

6 .Thaw chemically competent E.coli cells on ice for ~ 10 min

7 .For single fragment cloning, gently mix the cells with 1-2 µL of the reaction mixture and incubate the cells on ice for 20 min. for multiple fragments cloning, mix the cells with 3-5 µL of the reactant.

8 .Incubate the cells on ice for 20 min.

9 .Heat shock the cells at 42˚C for 45 sec

10 .Incubate the cells on ice for 2 min.

11 .Add 900 (or 950) µL of LB broth to 100 (or 50) µl of cells and transfer the cells to 15 ml round-bottom tube.

12 .Incubate the cells at 37˚C for 1 hour

13 .Plate the cells on agar plates containing suitable antibiotics (eg.100 µg/mL ampicillin). We usually spread 10 to 20 µL of cells onto an agar plate to get optimal number of colonies per plate for single fragment cloning, and 100 µL per plate for multiple fragments cloning. In case of 10-20 µL spreading, cells needs to be further silted with 80~ 90 µL LB broth for suitable spreading.

14 .Incubate the plates at 37˚ for 16 hr and analyze the colonies

Cloning protocol for IDT sequences

Re-suspending gene fragments

  1. Centrifuge for 5 seconds at 3000g
  2. Add 20 µL of TE to the tube for a final concentration of 10ng/µL
  3. Briefly vortex and centrifuge
  4. Tube can be stored at -20˚C

Digest with the restriction endonucleases

  • Add the following components
Product Gene fragment Vector
DNA 100 ng or 10 µL 600 ng
10X Buffer 2 5 µL 5 µL
Restriction Enzyme 1 µL(each) 1 µL(each)
ddH2O 33 µL 33 µL
  1. Incubate for 45 minutes at 37˚C
  2. Incubate for 20 minutes at 80˚C

Gene fragment and vector digested separately

Transformation

Repeat protocol as mentioned previously

Polylerase chain reaction (PCR)

Reaction setup

  • Add the following component at listed below
Component 25 µL reaction 50 µL reaction Final concentration
10X Standard Taq reaction Buffer 2.5 µL 5 µL 1x
10 mM dNTPs 0.5 µL 1 µL 200 µM
10 µM Forward primer 0.5 µL 1 µL 0.2 µM (0.05-1 µM)
10 µM reverse primer 0.5 µL 1 µL 0.2 µM (0.05-1 µM)
Template DNA Variable Variable <1.000 ng
Taq DNA polymerase 0.125 µL 0.25 µL 1.25 units/50 µL PCR
ddH2O To 25 µL To 50 µL
  • Assemble all reaction components on ice and quickly transfer the reactions to thermocycle preheated to 95°C and begin thermocycling

Thermocycling conditions for a routine PCR

Step Temperature Time
Initial Denaturation 95°C 30 seconds
30 Cycles 95°C
45-68°C
68°C
15-30 seconds
16-60 seconds
1 minute/Kb
Final extension 68°C 5 minutes
Hold 4-10°C