Difference between revisions of "Team:Cornell/Entrepreneurship"

Line 45: Line 45:
 
   font-size: 16px;
 
   font-size: 16px;
 
   line-height: normal;
 
   line-height: normal;
 +
}
 +
#HQ_page .row {
 +
 +
  padding-bottom: 100px;
 
}
 
}
  

Revision as of 03:58, 27 October 2017

<!DOCTYPE html> Practices

Business

OVERVIEW
We envisioned OxyPonics as a startup company that could provide comprehensive solutions to hydroponic farming. We were accepted into a hardware accelerator, Rev: Ithaca Startup Works, and participated in an 11 week summer program that walked us through the product design process. We spoke to potential customers, analyzed costs, and created a business plan that outlines the structure of OxyPonics.

Our business offers several product components. Our operating system consists of a sensor and a software for analyzing and storing data from sensor. Each sensor is able to cover 100 square feet of hydroponic farm and costs the consumer less than 50 dollars to build. Even with such low cost for our devices, for farmers who own large commercial hydroponic farm, it is still a burden to buy all equipment at once. By paying a flat rate per month to subscribe to Oxyponics, farmers can easily enjoy our hydroponics system. We also provide planner cup replacement and bacteria refill for free. With no use of costly dosing system or probes, Oxyponics offers an affordable and effective way to start your hydroponics business. Oxyponics is safe and has passed numerous test trials before being put to use. The common safety concerns from new potential subscribers are the electronics in the sensors and the use of e-coli. We guarantee farmers the E-coli we use are non-pathogenic and already sealed in a container. We do provide a third step to our chain for extra security: free UV light to kill any remaining bacteria on the crops after being harvested. For an electronic sensor used under water, it’s almost unavoidable for leaking to happen. Our solution is to find a balance between the extremely expensive high-end waterproof material/ paint and a steady, more affordable construction cost. With the very unlikely leakage to happen, part of the hydroponic farm will be flooded, and farmers need to drain and clean the tank as soon as possible.

Business Canvas Model
business canvas model
Market Analysis
The hydroponics industry is young and growing rapidly, allowing us to tap into these growth trends and introduce our product into the market. The hydroponics market is primarily divided between two techniques: deep water culture (DWC) and Nutrient Film Technique (NFT). Deep Water Culture describes a hydroponics system in which the plants’ roots are suspended in a well-oxygenated solution containing water and necessary nutrients. Nutrient Film Technique, on the other hand, describes the method where a stream of nutrient-rich water is continuously circulated past the roots of the plants in the hydroponic system.
Hydroponics is more geared towards DWC as it fits our product design better. DWC is a smaller market than NFT, but a proper demonstration of DWC could lead into more widespread implementation of our product in NFT systems. Our main competitors in the market are non-oxidative stress sensors and monitoring systems which regulate conductivity and pH. In order to enter the market, we must demonstrate the added benefit of oxidative stress monitoring in addition to these traditional systems. We believe that the hydroponics market is in need of innovation in efficiency, and OxyPonics can lead the way.
More information about the market can be found in our business plan.
Business Plan
Product Comparison
Currently there are no other oxidative stress monitors aimed toward a hydroponic system on the market. All other autonomous monitoring systems are significantly more expensive. More basic setups that manually test for pH and temperature are much cheaper, but have nowhere near the same testing and monitoring capabilities, especially on a larger scale.
The simplest hydroponics pH kit, in which the user manually tests the pH, and then adjusts the pH levels, costs about $16 [2]. This price increases with the scale of the hydroponic farm. The price of a 24/7 nutrient monitor stands at approximately $150 [1], and complex systems that monitor and send alerts in real-time can cost up to $500 [2]. CloudPonics, an autonomous system that monitor nutrients, the ambient atmosphere, and pH level, is valued at $1490 [3]. -
The current cost of our product is $223.37. OxyPonics fits into the lower price range of other products available on the market, making it more affordable for users. We chose components for our product that were cost efficient and high quality. The breakdown of price for each component of our system is provided in the table below. Labor costs, as well as patent and licensing costs, are not currently included in the product cost.
References
[1] Amazon. (2017, August). General Hydroponics pH Control Kit, Bluelab Combo Meter for Plant Germination, www.amazon.com.
[2] Growers House Hydroponics in Tucson. (2017, September). 24-7 Nutrient Monitor - Continuous Read, growershouse.com/24-7-nutrient-monitor-continuous-read.
[3] Cloudponics. (2017, September). Automate and remotely monitor your hydroponic plant grow system, www.cloudponics.com/gropro/.
Rev: Ithaca Start Up Works
rev
Over the summer, the Product Development subteam participated in the Hardware Accelerator program at Rev: Ithaca Startup Works. Cornell iGEM was among the eight teams that were accepted. The Hardware Accelerator program aims to help product teams through the process of determining if their ideas are commercially, technologically, and economically possible. In addition to a four day skills camp, Rev hosted guest speakers, held workshops, and provided usage of their prototyping lab to help us along the way.
rev feasibility
JUNE 5-JUNE 23

FEASIBILITY

In the first few weeks, we worked on finding an application for the redox sensitive bacteria that would best show their potential. During this time, we decided to target the hydroponics industry. In our process of customer discovery, we interviewed over 40 hydroponic farmers, distributors, and researchers along with the Policy and Practices subteam. See a summary of our interviews here.
JUNE 26-JULY 14

PROOF-OF-CONCEPT

Following customer discovery, we began to design our product based on the customer’s feedback. Our proof-of-concept consisted of Fusion 360 drawings for the hardware and web mockups for the software. Every week, we received comments and ideas from the instructors at Rev to improve our design until prototyping.
rev proof of concept
pic
JULY 17-AUGUST 4

PROTOTYPE

Using the resources at Rev, such as their 3D printers, we began assembling our system (link to Product Development in Toolkit). We went through many iterations of prototyping until Demo Day, where we were able showcase our efforts to the local community and potential investors.
Vision
Our product is versatile and aimed to work for any hydroponics setup, whether that is Deep Water Culture, Nutrient Film Technique, or something novel. We wish to provide exactly the large-scale, blanket-type sensing that conventional redox probes cannot. Our goal is to implement OxyPonics sensor systems in farms spanning the globe, all of which would be used to collect data to better understand the optimal balance for various types of crops.
In order to accomplish this, we need to grow. In order to scale up and deploy our product, we propose the following:
  • Increased research and development for continued bacterial development and product optimization
  • Improving predictive modeling for our product
  • Developing a mobile application that can be used with the biosensor
  • Customizing individual solutions for farms whose hydroponics setups may not be optimal for our product
  • Increasing efficiency of production by creating a biological division, a detection and monitoring division, and a packaging division
  • Channeling resources into manufacturing to distribute our product on the market
  • Improving marketing strategies by identifying new markets, advertising, and reaching out to our community.
pic
DATE

TITLE

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper.Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper.

DATE

TITLE

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper.Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper.

pic