Difference between revisions of "Team:Austin UTexas/Results"

(Prototype team page)
 
Line 1: Line 1:
{{Austin_UTexas}}
 
 
<html>
 
<html>
 +
<div class="bg-primary">
 +
<head>
 +
<script type="text/javascript" src="http://www.hostmath.com/Math/MathJax.js?config=OK"></script>
 +
<style>
 +
.container img:hover {
 +
  background-color: #FFF;
 +
  font-weight: bold;
 +
  box-shadow: #DEDCCF -1px 1px, #DEDCCF -2px 2px, #DEDCCF -3px 3px, #DEDCCF -4px 4px, #DEDCCF -5px 5px, #DEDCCF -6px 6px;
 +
  transform: translate3d(6px, -6px, 0);
 +
  transition-delay: 0s;
 +
  transition-duration: 0.4s;
 +
  transition-property: all;
 +
  transition-timing-function: line;
 +
}
 +
</style>
  
 +
</head>
  
<div class="column full_size" >
+
<body>
  
<h1>Results</h1>
+
<section>
 +
<div class="col-lg-16">
 +
<center>
 +
            <img src="https://static.igem.org/mediawiki/2016/d/d4/T--Imperial_College--modelling_banner.png" height="450"/>
 +
          </center>
 +
</div>
 +
<div class="col-lg-10 col-centered container">
 +
<p> This year our team created a mathematical representation of our Genetically Engineered Artificial Ratio (G.E.A.R.) system. This representation, or model, informed the wet lab on the timescales of the three modules of GEAR: communication, comparator and growth regulator. It also helped develop assembly strategies thanks to a thorough analysis of parameter scans and sensitivities. After a series of experiments in the wet lab, we were able to finesse our parameters making them more accurate. This process, presented below, can be seen as a continuous feedback between the wet lab and the dry lab of Ecolibrium.<br><br><br></p>
 +
<p>
 +
We developed our models with two main goals in mind:
 +
<ol style="font-size:18px;">
 +
<li>We wanted our model to be able to aid the team in the wetlab. Especially for optimizing the assembly process and balancing the circuit.</li>
 +
<li>We wanted to develop an in silico version of our circuit at single cell and population level. This allowed us to test the viability of the system in both normal and abnormal conditions. It also allows us to plan future experiments and used for the system.</li>
 +
</ol></p>
 +
<p>
 +
The following pages will show how we implemented modelling approaches to achieve our goals.
 +
<br><br><br>
 +
 
 +
 
 +
<specialh4><a href="https://2016.igem.org/Team:Imperial_College/SingleCell">The Single Cell Model</a></specialh4>
 +
<ul style="font-size:18px;">
 +
<li>Communication Module - We constructed the four quorum systems that we considered viable choices for our system (cin, rhl, lux and las)to allow us to directly compare the expected behaviour and plan our growth module experiments accordingly.
 +
<br>
 +
<a href="https://2016.igem.org/Team:Imperial_College/SingleCell#QuorumModel" class="text-center">
 +
<img src="https://static.igem.org/mediawiki/2016/0/0b/T--Imperial_College--ReadMore.jpg" width="100"/>
 +
</a>
 +
</li>
  
<p>Here you can describe the results of your project and your future plans. </p>
+
<li>Comparator Module - We used RNAstruct developed by Matthews Lab to help aid the development of the ANTISTAR. We modeled STAR and ANTISTAR behaviour in silico
 +
<a href="https://2016.igem.org/Team:Imperial_College/SingleCell#StarModel" class="text-center"> <img src="https://static.igem.org/mediawiki/2016/0/0b/T--Imperial_College--ReadMore.jpg" width="100"/></a></li>
  
<h5>What should this page contain?</h5>
+
<li>Growth Regulator Module - We modelled 4 different growth regulator systems in silico in order to assess the speed and effectiveness of each case.  
<ul>
+
<a href="https://2016.igem.org/Team:Imperial_College/SingleCell#GrowthModel" class="text-center"> <img src="https://static.igem.org/mediawiki/2016/0/0b/T--Imperial_College--ReadMore.jpg" width="100"/></a></li>
<li> Clearly and objectively describe the results of your work.</li>
+
<li> Future plans for the project. </li>
+
<li> Considerations for replicating the experiments. </li>
+
 
</ul>
 
</ul>
 +
</p>
  
<h5>You should also describe what your results mean: </h5>
 
  
<ul>
+
 
<li> Interpretation of the results obtained during your project. Don't just show a plot/figure/graph/other, tell us what you think the data means. This is an important part of your project that the judges will look for. </li>
+
<specialh4><a href="https://2016.igem.org/Team:Imperial_College/GRO">
<li> Show data, but remember all measurement and characterization data must be on part pages in the Registry. </li>
+
Population Model </a></specialh4><br>
<li> Consider including an analysis summary section to discuss what your results mean. Judges like to read what you think your data means, beyond all the data you have acquired during your project. </li>
+
<ul style="font-size:18px;">
 +
<li> Matlab population model with GP2 growth regulation in two population
 +
<a href="https://2016.igem.org/Team:Imperial_College/GRO#Matlab"> <img src="https://static.igem.org/mediawiki/2016/0/0b/T--Imperial_College--ReadMore.jpg" width="100"/></a></li>
 +
<li>We used the GRO programming language to model a simplified version of our circuit with GP0.4 growth regulation into two populations of E.Coli. 
 +
<a href="https://2016.igem.org/Team:Imperial_College/GRO#GRO"> <img src="https://static.igem.org/mediawiki/2016/0/0b/T--Imperial_College--ReadMore.jpg" width="100"/></a></li>
 
</ul>
 
</ul>
  
 +
</p>
 +
 +
 +
 +
<div class="col-lg-10 col-centered">
 +
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 +
            <div class="panel panel-default">
 +
                <div class="panel-heading" role="tab" id="SpeAcc">
 +
                    <h4 class="panel-title">
 +
                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#SpeAcc-collapse" aria-expanded="false" aria-controls="SpeAcc-collapse">
 +
<div>
 +
                    <div class="col-md-11">Species</div><div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 
</div>
 
</div>
 +
                    </a>
 +
                    </h4>
  
<div class="clear"></div>
+
                </div>
 +
                <div id="SpeAcc-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="SpeAcc">
 +
                    <div class="panel-body">
  
<div class="column half_size" >
+
<specialh4> Table 1: Universal Species Table </specialh4>
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Species Name</th>
 +
            <th>Description</th>
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
        <tr>
 +
            <td>C4</td>
 +
            <td>AHLs produced by RhlI synthase </td>           
 +
        </tr>
 +
        <tr>
 +
            <td>C14</td>
 +
            <td>AHLs produced by CinI synthase</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>g_C4R</td>
 +
            <td>Copy number for plasmid backbone housing C4R </td>           
 +
        </tr>
 +
        <tr>
 +
            <td>mC4R</td>
 +
            <td>mRNA for RhlR</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>C4R</td>
 +
            <td>RhlR transcriptional regulator  </td>           
 +
        </tr>
 +
        <tr>
 +
            <td>C4Comp</td>
 +
            <td>Complex by C4 AHL and RhlR transcriptional regulator </td>         
 +
        </tr>
 +
        <tr>
 +
            <td>g_STARC4Comp</td>
 +
            <td>Complex formed between plasmid backbone for STAR (pRhl) and c4 Comp  </td>           
 +
        </tr>
 +
        <tr>
 +
            <td>g_C14R</td>
 +
            <td>Copy number for plasmid backbone housing C14R </td>         
 +
        </tr>
 +
        <tr>
 +
            <td>mC14R</td>
 +
            <td>mRNA for CinR </td>           
 +
        </tr>
 +
        <tr>
 +
            <td>C14R</td>
 +
            <td>CinR transcriptional regulator</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>C14Comp</td>
 +
            <td>Complex by C14 AHL and CinR transcriptional regulator</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>g_ANTISTARC14Comp</td>
 +
            <td>Complex formed between plasmid backbone for ANTISTAR (pCin) and C14 Comp</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>g_STAR</td>
 +
            <td>Copy number for plasmid backbone housing STAR</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>STAR</td>
 +
            <td>Short transcription activating RNA (STAR)</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>g_ANTISTAR</td>
 +
            <td>Copy number for plasmid backbone housing ANTISTAR</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>ANTISTAR</td>
 +
            <td>Anti Short transcription activating RNA (ANTISTAR) </td>         
 +
        </tr>
 +
        <tr>
 +
            <td>STAR:ANTISTAR</td>
 +
            <td>STAR:ANTISTAR Complex</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>STAR_Target</td>
 +
            <td>Star Target plasmid (AD1 terminator)</td>         
 +
        </tr>
  
 +
</tbody>
 +
</table>
  
<h5> Project Achievements </h5>
+
<specialh4> Table 2: Unique Species for GP0.4 model Table </specialh4>
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Species Name</th>
 +
            <th>Description</th>
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
        <tr>
 +
            <td>g_GP0.4</td>
 +
            <td>Plasmid hosting STAR Target and growth regulating protein GP2</td>           
 +
        </tr>
 +
        <tr>
 +
            <td>mGP0.4</td>
 +
            <td>mRNA for GP0.4</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>pre_GP0.4</td>
 +
            <td>Unfolded GP0.4</td>           
 +
        </tr>
 +
        <tr>
 +
            <td>GP0.4</td>
 +
            <td>GP0.4 (Gene Product 0.4) sequesters FtsZ and stops cell division.</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>FtsZ</td>
 +
            <td>FtsZ is a protein that influences cell division</td>           
 +
        </tr>
 +
        <tr>
 +
            <td>GP0.4:FtsZ</td>
 +
            <td>GP0.4:FtsZ Complex</td>         
 +
        </tr>
  
<p>You can also include a list of bullet points (and links) of the successes and failures you have had over your summer. It is a quick reference page for the judges to see what you achieved during your summer.</p>
 
  
<ul>
+
</tbody>
<li>A list of linked bullet points of the successful results during your project</li>
+
</table>
<li>A list of linked bullet points of the unsuccessful results during your project. This is about being scientifically honest. If you worked on an area for a long time with no success, tell us so we know where you put your effort.</li>
+
</ul>
+
  
</div>
 
  
 +
<specialh4> Table 3: Unique Species for GP2 model Table </specialh4>
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Species Name</th>
 +
            <th>Description</th>
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
        <tr>
 +
            <td>g_GP2</td>
 +
            <td>Plasmid hosting STAR Target and growth regulating protein GP2</td>           
 +
        </tr>
 +
        <tr>
 +
            <td>mGP2</td>
 +
            <td>mRNA for GP2</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>pre_GP2</td>
 +
            <td>Unfolded GP2</td>           
 +
        </tr>
 +
        <tr>
 +
            <td>GP2</td>
 +
            <td>GP2 (Gene Product 2) sequesters RNA Polymerase </td>           
 +
        </tr>
 +
        <tr>
 +
            <td>RNAP</td>
 +
            <td>RNA Polymerase</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>GP2:RNAP</td>
 +
            <td>GP2:RNAP Complex</td>           
 +
        </tr>
  
<div class="column half_size" >
+
</tbody>
 +
</table>
  
<h5>Inspiration</h5>
+
<specialh4> Table 4: Unique Species for CAT and LeuB </specialh4>
<p>See how other teams presented their results.</p>
+
<table class="table table-bordered table-hover">
<ul>
+
<thead>
<li><a href="https://2014.igem.org/Team:TU_Darmstadt/Results/Pathway">2014 TU Darmstadt </a></li>
+
        <tr>
<li><a href="https://2014.igem.org/Team:Imperial/Results">2014 Imperial </a></li>
+
            <th>Species Name</th>
<li><a href="https://2014.igem.org/Team:Paris_Bettencourt/Results">2014 Paris Bettencourt </a></li>
+
            <th>Description</th>
</ul>
+
        </tr>
 +
    </thead>
 +
    <tbody>
 +
        <tr>
 +
            <td>mTet</td>
 +
            <td>mRNA for Tetracycline</td>           
 +
        </tr>
 +
        <tr>
 +
            <td>Tet</td>
 +
            <td>Tetracycline </td>          
 +
        </tr>
 +
        <tr>
 +
            <td>pTet</td>
 +
            <td>Promoter that is repressed by Tetracycline</td>           
 +
        </tr>
 +
        <tr>
 +
            <td>Tet:pTet</td>
 +
            <td>Tetracycline:pTet complex </td>          
 +
        </tr>
 +
        <tr>
 +
            <td>mLeuB</td>
 +
            <td>mRNA for Leucine B</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>LeuB</td>
 +
            <td>Leucine B</td>          
 +
        </tr>
 +
        <tr>
 +
            <td>mCAT</td>
 +
            <td>mRNA for Chloramphenicol Acetyltransferase</td>         
 +
        </tr>
 +
        <tr>
 +
            <td>CAT</td>
 +
            <td>Chloramphenicol Acetyltransferase</td>           
 +
        </tr>
 +
 
 +
</tbody>
 +
</table>
 +
 
 +
    </div>
 +
  </div>
  
 
</div>
 
</div>
  
 +
<div class="some-padding"></div>
 +
<div class="some-padding"></div>
 +
 +
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 +
            <div class="panel panel-default">
 +
                <div class="panel-heading" role="tab" id="ParaAcc">
 +
                    <h4 class="panel-title">
 +
                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#ParaAcc-collapse" aria-expanded="false" aria-controls="ParaAcc-collapse">
 +
<div>
 +
                    <div class="col-md-11">Parameters</div><div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 +
</div>
 +
                    </a>
 +
                    </h4>
 +
 +
                </div>
 +
                <div id="ParaAcc-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="ParaAcc">
 +
                    <div class="panel-body">
 +
 +
<specialh4> Table 5: General Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
        <tr>
 +
            <td>Cell Volume</td>
 +
            <td></td>
 +
            <td>6.70E<sup>-16</sup></td>
 +
            <td>L</td>
 +
            <td>Neidhardt F.C. Escherichia coli and Salmonella: Cellular and Molecular Biology. Vol 1. pp. 15, ASM Press 1996.</td>
 +
           
 +
        </tr>
 +
        <tr>
 +
            <td>Transcription rate</td>
 +
            <td>28 Nucleotides/s was used</td>
 +
            <td>28-89</td>
 +
            <td>Nucleotides/s</td>
 +
            <td>Vogel U, Jensen KF. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol. 1994 May176(10):2807-13 p.2811 table 2</td>       
 +
        </tr>
 +
        <tr>
 +
            <td>Translation rate</td>
 +
            <td>12 Amino acid/s was used</td>
 +
            <td>12-21</td>
 +
            <td>Amino acids/s</td>
 +
            <td>Bremer, H., Dennis, P. P. (1996) Modulation of chemical composition and other parameters of the cell by growth rate. Neidhardt, et al. eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. chapter 97, p. 1559, Table 3</td>       
 +
        </tr>
 +
        <tr>
 +
            <td>d_prot</td>
 +
            <td>Protein degradation</td>
 +
            <td>1.39E<sup>-05</sup></td>
 +
            <td>1/min</td>
 +
            <td>Biomolecular Systems by Del Vecchio</td>       
 +
        </tr>
 +
        <tr>
 +
            <td>k_mat</td>
 +
            <td>Protein maturation rate</td>
 +
            <td>0.16</td>
 +
            <td>1/min</td>
 +
            <td>Megerle JA, Fritz G, Gerland U, Jung K, Rädler JO. Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J. 2008 Aug95(4):2103-15. p.2106 right column bottom of paragraph</td>       
 +
        </tr>
 +
        <tr>
 +
            <td>D</td>
 +
            <td>Dilution rate</td>
 +
            <td>0.048</td>
 +
            <td>1/min</td>
 +
            <td>A synthetic Escherichia coli predator–prey ecosystem</td>       
 +
        </tr>
 +
        <tr>
 +
            <td>d_mRNA</td>
 +
            <td>mRNA degradation rate constant</td>
 +
            <td>0.139</td>
 +
            <td>1/min</td>
 +
            <td>Taken from 5 min mRNA degradation time</td>       
 +
        </tr>
 +
        <tr>
 +
            <td>Copy number for 3K3 and 3C3</td>
 +
            <td>Copy number</td>
 +
            <td>20-30</td>
 +
            <td>molecules</td>
 +
            <td>http://parts.igem.org/Part:pSB3K3</td>       
 +
        </tr>
 +
        <tr>
 +
            <td>Copy number for 1K3 and 1C3</td>
 +
            <td>Copy number</td>
 +
            <td>100-300</td>
 +
            <td>molecules</td>
 +
            <td>http://parts.igem.org/Part:pSB1C3</td>       
 +
        </tr>
 +
 +
</tbody>
 +
</table>
 +
 +
 +
<specialh4> Table 6: Quorum Module Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
        <tr>
 +
            <td>k_C4</td>
 +
            <td>Rhl/C4 Production Rate Constant</td>
 +
            <td><ul>
 +
<li>8.00E<sup>-07</sup></li>
 +
<li>5.36E<sup>-13</sup></li>
 +
<li>5.36E<sup>-22</sup></li>
 +
<li>3.22E<sup>02</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>M/min</li>
 +
<li>nMol/min</li>
 +
<li>mol/min</li>
 +
<li>molecules/min</li>
 +
</ul></td>
 +
            <td>Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You</td>
 +
           
 +
        </tr>
 +
<tr>
 +
            <td>k_C14</td>
 +
            <td>Cin/C14 Production Rate Constant</td>
 +
            <td><ul>
 +
<li>5.00E<sup>-08</sup></li>
 +
<li>3.35E<sup>-14</sup></li>
 +
<li>3.35E<sup>-23</sup></li>
 +
<li>2.00E<sup>01</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>M/min</li>
 +
<li>nMol/min</li>
 +
<li>mol/min</li>
 +
<li>molecules/min</li>
 +
</ul></td>
 +
            <td>Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You</td>
 +
           
 +
        </tr>
 +
 +
<tr>
 +
            <td>k_mC4R</td>
 +
            <td>Transcription rate of C4R</td>
 +
            <td><ul>
 +
<li>2.23</li>
 +
<li>5.51E<sup>-09</sup></li>
 +
<li>3.69E<sup>-24</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>mRNA/min</li>
 +
<li>nMol/min</li>
 +
<li>Mol/min</li>
 +
</ul></td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>
 +
           
 +
        </tr>
 +
 +
<tr>
 +
            <td>k_mC14R</td>
 +
            <td>Transcription rate of C14R</td>
 +
            <td><ul>
 +
<li>2.23</li>
 +
<li>3.69E<sup>-15</sup></li>
 +
<li>3.69E<sup>-24</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>mRNA/min</li>
 +
<li>nMol/min</li>
 +
<li>Mol/min</li>
 +
</ul></td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>
 +
           
 +
        </tr>
 +
 +
<tr>
 +
            <td>k_C4R</td>
 +
            <td>Translation rate of C4R</td>
 +
            <td><ul>
 +
<li>2.99</li>
 +
<li>4.96E<sup>-24</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>Protein/min</li>
 +
<li>Mol/min</li>
 +
</ul></td>
 +
            <td>Calculated from Bionumbers average translation rate : Bremer et al</td>
 +
           
 +
        </tr>
 +
 +
<tr>
 +
            <td>k_C14R</td>
 +
            <td>Translation rate of C14R</td>
 +
            <td><ul>
 +
<li>2.99</li>
 +
<li>4.96E<sup>-24</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>Protein/min</li>
 +
<li>Mol/min</li>
 +
</ul></td>
 +
            <td>Calculated from Bionumbers average translation rate : Bremer et al</td>
 +
           
 +
        </tr>
 +
 +
<tr>
 +
            <td>kf_C4Comp</td>
 +
            <td>C4 - C4R Complex formation</td>
 +
            <td><ul>
 +
<li>1.00E<sup>08</sup></li>
 +
<li>2.50E<sup>-01</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>1/M.min</li>
 +
<li>1/complexes.min</li>
 +
</ul></td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>
 +
           
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_C4Comp</td>
 +
            <td>C4:C4R Complex dissassociation</td>
 +
            <td>10</td>
 +
            <td>1/min</td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>       
 +
        </tr>
 +
 +
<tr>
 +
            <td>kf_C14Comp</td>
 +
            <td>C4 - C4R Complex formation</td>
 +
            <td><ul>
 +
<li>1.00E<sup>08>/sup></li>
 +
<li>2.50E<sup>-01</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>1/M.min</li>
 +
<li>1/complexes.min</li>
 +
</ul></td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>
 +
           
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_C14Comp</td>
 +
            <td>C4:C4R Complex dissassociation</td>
 +
            <td>10</td>
 +
            <td>1/min</td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kf_DimC4</td>
 +
            <td>C4:C4R complex dimerization</td>
 +
            <td>5.00E<sup>07</sup></td>
 +
            <td>M/min</td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_DimC4</td>
 +
            <td>C4:C4R complex reverse dimerization</td>
 +
            <td>1</td>
 +
            <td>1/min</td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kf_DimC14</td>
 +
            <td>C14:C14R complex dimerization</td>
 +
            <td>5.00E<sup>07</sup></td>
 +
            <td>M/min</td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_DimC14</td>
 +
            <td>C14:C14R complex reverse dimerization</td>
 +
            <td>1</td>
 +
            <td>1/min</td>
 +
            <td>Dynamics of quorum sensing switch - Weber</td>       
 +
        </tr>
 +
       
 +
        <tr>
 +
            <td>d_C4</td>
 +
            <td>C4 degradation rate constant</td>
 +
            <td>2.21E<sup>-04</sup></td>
 +
            <td>1/min</td>
 +
            <td>Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>d_C14</td>
 +
            <td>C14 degradation rate constant</td>
 +
            <td>2.83E<sup>-04</sup></td>
 +
            <td>1/min</td>
 +
            <td>Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>d_C4R</td>
 +
            <td>C4R degradation rate constant</td>
 +
            <td>0.002</td>
 +
            <td>1/min</td>
 +
            <td>Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>d_C14R</td>
 +
            <td>C14R degradation rate constant</td>
 +
            <td>0.002</td>
 +
            <td>1/min</td>
 +
            <td>Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You</td>       
 +
        </tr>
 +
</tbody>
 +
</table>
 +
 +
<specialh4> Table 7: STAR Module Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
 +
        <tr>
 +
            <td>kf_gSTARC4Comp</td>
 +
            <td>gSTAR-C4 comple association</td>
 +
            <td>0.25</td>
 +
            <td>1/molecules.min</td>
 +
            <td>Assumed same as quorum complex formation</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_gSTARC4Comp</td>
 +
            <td>gSTAR-C4 complex disassociation</td>
 +
            <td>10</td>
 +
            <td>1/min</td>
 +
            <td>Assumed same as quorum complex formation</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kf_gANTISTARC14Comp</td>
 +
            <td>gANTISTAR-C14 complex association</td>
 +
            <td>0.25</td>
 +
            <td>1/molecules.min</td>
 +
            <td>Assumed same as quorum complex formation</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_gANTISTARC14Comp</td>
 +
            <td>gANTISTAR - C14 complex disassociation</td>
 +
            <td>10</td>
 +
            <td>1/min</td>
 +
            <td>Assumed same as quorum complex formation</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_STAR</td>
 +
            <td>Basal Rate of STAR production (without C4:C4R induction)</td>
 +
            <td><ul>
 +
<li>1.91E<sup>-01</sup></li>
 +
<li>3.08E<sup>-23</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>mRNA/min</li>
 +
<li>mol/min</li>
 +
</ul></td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
 +
        <tr>
 +
            <td>k_iSTAR</td>
 +
            <td>Rate of STAR production (after induction of C4:C4R)</td>
 +
            <td><ul>
 +
<li>18.57</li>
 +
<li>3.08E<sup>-23</sup></li>
 +
</ul></td>
 +
            <td><ul>
 +
<li>mRNA/min</li>
 +
<li>mol/min</li>
 +
</ul></td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_ANTISTAR</td>
 +
            <td>Basal Rate of ANTISTAR production (without C14:C14R induction)</td>
 +
            <td>1.91E<sup>-01</sup></td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_iANTISTAR</td>
 +
            <td>Rate of ANTI STAR production (after induction of C14:C14R)</td>
 +
            <td>18.57</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kf_STARANTISTAR</td>
 +
            <td>STAR:ANTISTAR complex formation</td>
 +
            <td>62</td>
 +
            <td>complexes/min</td>
 +
            <td>Calculated using DNA strand displacement (Winfree et al)</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_STARANTISTAR</td>
 +
            <td>STAR:ANTISTAR complex dissociation</td>
 +
            <td>2</td>
 +
            <td>1/min</td>
 +
            <td>Calculated using DNA strand displacement (Winfree et al)</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kf_STARAD1</td>
 +
            <td>STAR:AD1 Complex formation</td>
 +
            <td>62</td>
 +
            <td>complexes/min</td>
 +
            <td>Calculated using DNA strand displacement (Winfree et al)</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_STARAD1</td>
 +
            <td>STAR:AD1 Complex dissociation</td>
 +
            <td>2</td>
 +
            <td>1/min</td>
 +
            <td>Calculated using DNA strand displacement (Winfree et al)</td>       
 +
        </tr>
 +
 +
</tbody>
 +
</table>
 +
 +
 +
<specialh4> Table 8: Gp0.4 Module Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
 +
        <tr>
 +
            <td>k_mGP0.4</td>
 +
            <td>Transcription of mGP0.4 before STAR induction</td>
 +
            <td>0.086</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_imGP0.4</td>
 +
            <td>Transcription of mGP0.4 after STAR induction</td>
 +
            <td>8.08</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kf_GP0.4Ftsz</td>
 +
            <td>GP0.4:Ftsz complex formation</td>
 +
            <td>9.44E<sup>03</sup></td>
 +
            <td>1/molecules.min</td>
 +
            <td></td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>kr_GP0.4Ftsz</td>
 +
            <td>GP0.4:Ftsz complex dissociation</td>
 +
            <td>30</td>
 +
            <td>1/min</td>
 +
            <td></td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_GP0.4</td>
 +
            <td>Translation of GP0.4</td>
 +
            <td>13.86</td>
 +
            <td>Protein/min</td>
 +
            <td>Calculated from Bionumbers average translation rate : Bremer et al</td>       
 +
        </tr>
 +
 +
</tbody>
 +
</table>
 +
 +
<specialh4> Table 9: Tet Module Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
 +
        <tr>
 +
            <td>k_mTET</td>
 +
            <td>Basal transcription of TET</td>
 +
            <td>0.028</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from experimental results for STAR activation (94 fold activation)</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_imTET</td>
 +
            <td>Induced transcription of TET</td>
 +
            <td>2.7</td>
 +
            <td>mRNA/min</td>
 +
            <td></td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_TET:pTET</td>
 +
            <td>TET:pTET complex formation</td>
 +
            <td>120</td>
 +
            <td>1/molecules.min</td>
 +
            <td><a href="https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1">https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1</a></td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_-TET:pTET</td>
 +
            <td>TET:pTET complex dissassociation</td>
 +
            <td>8.40E<sup>05</sup></td>
 +
            <td>1/min</td>
 +
            <td><a href="https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1">https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1</a></td>         
 +
        </tr>
 +
 +
</tbody>
 +
</table>
 +
 +
<specialh4> Table 10: LeuB Module Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
 +
        <tr>
 +
            <td>k_mLeuB</td>
 +
            <td>Basal transcription of LeuB transcription</td>
 +
            <td>1.538</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_imLeuB</td>
 +
            <td>Induced transcription of LeuB transcription</td>
 +
            <td>0.015</td>
 +
            <td>mRNA/min</td>
 +
            <td>99% Repression from tet was assumed</td>       
 +
        </tr>
 +
 +
 +
        <tr>
 +
            <td>k_LeuB</td>
 +
            <td>Translation of LeuB</td>
 +
            <td>0.0218</td>
 +
            <td>molecule/min</td>
 +
            <td><a href="http://biocyc.org/gene?orgid=ECOLI&id=3-ISOPROPYLMALDEHYDROG-MONOMER#tab=FTRS">http://biocyc.org/gene?orgid=ECOLI&id=3-ISOPROPYLMALDEHYDROG-MONOMER#tab=FTRS</a></td>       
 +
        </tr>
 +
 +
</tbody>
 +
</table>
 +
 +
<specialh4> Table 11: CAT Module Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
 +
        <tr>
 +
            <td>k_mCAT</td>
 +
            <td>Basal transcription of CAT transcription</td>
 +
            <td>1.875</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_imCAT</td>
 +
            <td>Induced transcription of CAT transcription</td>
 +
            <td>0.018</td>
 +
            <td>mRNA/min</td>
 +
            <td>99% Repression from CAT was assumed</td>       
 +
        </tr>
 +
 +
 +
        <tr>
 +
            <td>k_CAT</td>
 +
            <td>Translation of CAT</td>
 +
            <td>0.03568</td>
 +
            <td>molecule/min</td>
 +
            <td><a href="http://www.uniprot.org/uniprot/P62577">http://www.uniprot.org/uniprot/P62577</a></td>       
 +
        </tr>
 +
 +
</tbody>
 +
</table>
 +
 +
<specialh4> Table 12: GP2 Module Numbers Table </specialh4>
 +
 +
<table class="table table-bordered table-hover">
 +
<thead>
 +
        <tr>
 +
            <th>Parameter name</th>
 +
            <th>Description</th>
 +
            <th>Value</th>
 +
            <th>Unit</th>
 +
            <th>Source</th>
 +
         
 +
        </tr>
 +
    </thead>
 +
    <tbody>
 +
 +
        <tr>
 +
            <td>k_mGP2</td>
 +
            <td>Transcription of mGP2 before STAR induction - Basal</td>
 +
            <td>0.07</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated using 94 fold activation </td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_imGP2</td>
 +
            <td>Transcription of mGP2 after STAR induction (7.2 kDa)</td>
 +
            <td>6.56</td>
 +
            <td>mRNA/min</td>
 +
            <td>Calculated from Bionumbers average transcription rate - RNA polymerase transcription</td>       
 +
        </tr>
 +
 +
 +
        <tr>
 +
            <td>k_GP2RNAP</td>
 +
            <td>GP2:RNAP complex formation</td>
 +
            <td></td>
 +
            <td>1/Mole.min</td>
 +
            <td>Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_-GP2RNAP</td>
 +
            <td>GP2:RNAP complex dissociation</td>
 +
            <td></td>
 +
            <td>1/min</td>
 +
            <td>Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_GP2</td>
 +
            <td>Translation of GP2</td>
 +
            <td>11.2</td>
 +
            <td>Protein/min</td>
 +
            <td>Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>RNA</td>
 +
            <td>Total RNA pol</td>
 +
            <td>1800</td>
 +
            <td>molecules/cell</td>
 +
            <td>Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7</td>       
 +
        </tr>
 +
 +
        <tr>
 +
            <td>k_mRNAP</td>
 +
            <td>Transcription of RNA pol</td>
 +
            <td>2400</td>
 +
            <td>nucleotides/min.RNAP</td>
 +
            <td>Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7</td>       
 +
        </tr>
 +
 +
</tbody>
 +
</table>
 +
 +
    </div>
 +
  </div>
 +
</div>
  
  
 +
</section>
 +
</body>
 +
<img class="backTop" onclick="document.documentElement.scrollTop = document.body.scrollTop = 500;" src="https://static.igem.org/mediawiki/2016/1/19/T--Imperial_College--BackTop.png" >
 
</html>
 
</html>

Revision as of 16:58, 22 June 2017

This year our team created a mathematical representation of our Genetically Engineered Artificial Ratio (G.E.A.R.) system. This representation, or model, informed the wet lab on the timescales of the three modules of GEAR: communication, comparator and growth regulator. It also helped develop assembly strategies thanks to a thorough analysis of parameter scans and sensitivities. After a series of experiments in the wet lab, we were able to finesse our parameters making them more accurate. This process, presented below, can be seen as a continuous feedback between the wet lab and the dry lab of Ecolibrium.


We developed our models with two main goals in mind:

  1. We wanted our model to be able to aid the team in the wetlab. Especially for optimizing the assembly process and balancing the circuit.
  2. We wanted to develop an in silico version of our circuit at single cell and population level. This allowed us to test the viability of the system in both normal and abnormal conditions. It also allows us to plan future experiments and used for the system.

The following pages will show how we implemented modelling approaches to achieve our goals.


The Single Cell Model

  • Communication Module - We constructed the four quorum systems that we considered viable choices for our system (cin, rhl, lux and las)to allow us to directly compare the expected behaviour and plan our growth module experiments accordingly.
  • Comparator Module - We used RNAstruct developed by Matthews Lab to help aid the development of the ANTISTAR. We modeled STAR and ANTISTAR behaviour in silico
  • Growth Regulator Module - We modelled 4 different growth regulator systems in silico in order to assess the speed and effectiveness of each case.

Population Model
  • Matlab population model with GP2 growth regulation in two population
  • We used the GRO programming language to model a simplified version of our circuit with GP0.4 growth regulation into two populations of E.Coli.

Table 1: Universal Species Table
Species Name Description
C4 AHLs produced by RhlI synthase
C14 AHLs produced by CinI synthase
g_C4R Copy number for plasmid backbone housing C4R
mC4R mRNA for RhlR
C4R RhlR transcriptional regulator
C4Comp Complex by C4 AHL and RhlR transcriptional regulator
g_STARC4Comp Complex formed between plasmid backbone for STAR (pRhl) and c4 Comp
g_C14R Copy number for plasmid backbone housing C14R
mC14R mRNA for CinR
C14R CinR transcriptional regulator
C14Comp Complex by C14 AHL and CinR transcriptional regulator
g_ANTISTARC14Comp Complex formed between plasmid backbone for ANTISTAR (pCin) and C14 Comp
g_STAR Copy number for plasmid backbone housing STAR
STAR Short transcription activating RNA (STAR)
g_ANTISTAR Copy number for plasmid backbone housing ANTISTAR
ANTISTAR Anti Short transcription activating RNA (ANTISTAR)
STAR:ANTISTAR STAR:ANTISTAR Complex
STAR_Target Star Target plasmid (AD1 terminator)
Table 2: Unique Species for GP0.4 model Table
Species Name Description
g_GP0.4 Plasmid hosting STAR Target and growth regulating protein GP2
mGP0.4 mRNA for GP0.4
pre_GP0.4 Unfolded GP0.4
GP0.4 GP0.4 (Gene Product 0.4) sequesters FtsZ and stops cell division.
FtsZ FtsZ is a protein that influences cell division
GP0.4:FtsZ GP0.4:FtsZ Complex
Table 3: Unique Species for GP2 model Table
Species Name Description
g_GP2 Plasmid hosting STAR Target and growth regulating protein GP2
mGP2 mRNA for GP2
pre_GP2 Unfolded GP2
GP2 GP2 (Gene Product 2) sequesters RNA Polymerase
RNAP RNA Polymerase
GP2:RNAP GP2:RNAP Complex
Table 4: Unique Species for CAT and LeuB
Species Name Description
mTet mRNA for Tetracycline
Tet Tetracycline
pTet Promoter that is repressed by Tetracycline
Tet:pTet Tetracycline:pTet complex
mLeuB mRNA for Leucine B
LeuB Leucine B
mCAT mRNA for Chloramphenicol Acetyltransferase
CAT Chloramphenicol Acetyltransferase
Table 5: General Numbers Table
Parameter name Description Value Unit Source
Cell Volume 6.70E-16 L Neidhardt F.C. Escherichia coli and Salmonella: Cellular and Molecular Biology. Vol 1. pp. 15, ASM Press 1996.
Transcription rate 28 Nucleotides/s was used 28-89 Nucleotides/s Vogel U, Jensen KF. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol. 1994 May176(10):2807-13 p.2811 table 2
Translation rate 12 Amino acid/s was used 12-21 Amino acids/s Bremer, H., Dennis, P. P. (1996) Modulation of chemical composition and other parameters of the cell by growth rate. Neidhardt, et al. eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. chapter 97, p. 1559, Table 3
d_prot Protein degradation 1.39E-05 1/min Biomolecular Systems by Del Vecchio
k_mat Protein maturation rate 0.16 1/min Megerle JA, Fritz G, Gerland U, Jung K, Rädler JO. Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J. 2008 Aug95(4):2103-15. p.2106 right column bottom of paragraph
D Dilution rate 0.048 1/min A synthetic Escherichia coli predator–prey ecosystem
d_mRNA mRNA degradation rate constant 0.139 1/min Taken from 5 min mRNA degradation time
Copy number for 3K3 and 3C3 Copy number 20-30 molecules http://parts.igem.org/Part:pSB3K3
Copy number for 1K3 and 1C3 Copy number 100-300 molecules http://parts.igem.org/Part:pSB1C3
Table 6: Quorum Module Numbers Table
Parameter name Description Value Unit Source
k_C4 Rhl/C4 Production Rate Constant
  • 8.00E-07
  • 5.36E-13
  • 5.36E-22
  • 3.22E02
  • M/min
  • nMol/min
  • mol/min
  • molecules/min
Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You
k_C14 Cin/C14 Production Rate Constant
  • 5.00E-08
  • 3.35E-14
  • 3.35E-23
  • 2.00E01
  • M/min
  • nMol/min
  • mol/min
  • molecules/min
Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You
k_mC4R Transcription rate of C4R
  • 2.23
  • 5.51E-09
  • 3.69E-24
  • mRNA/min
  • nMol/min
  • Mol/min
Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_mC14R Transcription rate of C14R
  • 2.23
  • 3.69E-15
  • 3.69E-24
  • mRNA/min
  • nMol/min
  • Mol/min
Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_C4R Translation rate of C4R
  • 2.99
  • 4.96E-24
  • Protein/min
  • Mol/min
Calculated from Bionumbers average translation rate : Bremer et al
k_C14R Translation rate of C14R
  • 2.99
  • 4.96E-24
  • Protein/min
  • Mol/min
Calculated from Bionumbers average translation rate : Bremer et al
kf_C4Comp C4 - C4R Complex formation
  • 1.00E08
  • 2.50E-01
  • 1/M.min
  • 1/complexes.min
Dynamics of quorum sensing switch - Weber
kr_C4Comp C4:C4R Complex dissassociation 10 1/min Dynamics of quorum sensing switch - Weber
kf_C14Comp C4 - C4R Complex formation
  • 1.00E08>/sup>
  • 2.50E-01
  • 1/M.min
  • 1/complexes.min
Dynamics of quorum sensing switch - Weber
kr_C14Comp C4:C4R Complex dissassociation 10 1/min Dynamics of quorum sensing switch - Weber
kf_DimC4 C4:C4R complex dimerization 5.00E07 M/min Dynamics of quorum sensing switch - Weber
kr_DimC4 C4:C4R complex reverse dimerization 1 1/min Dynamics of quorum sensing switch - Weber
kf_DimC14 C14:C14R complex dimerization 5.00E07 M/min Dynamics of quorum sensing switch - Weber
kr_DimC14 C14:C14R complex reverse dimerization 1 1/min Dynamics of quorum sensing switch - Weber
d_C4 C4 degradation rate constant 2.21E-04 1/min Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You
d_C14 C14 degradation rate constant 2.83E-04 1/min Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You
d_C4R C4R degradation rate constant 0.002 1/min Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You
d_C14R C14R degradation rate constant 0.002 1/min Optimal tuning of bacterial sensing potential - Anand Pai & Lingchong You
Table 7: STAR Module Numbers Table
Parameter name Description Value Unit Source
kf_gSTARC4Comp gSTAR-C4 comple association 0.25 1/molecules.min Assumed same as quorum complex formation
kr_gSTARC4Comp gSTAR-C4 complex disassociation 10 1/min Assumed same as quorum complex formation
kf_gANTISTARC14Comp gANTISTAR-C14 complex association 0.25 1/molecules.min Assumed same as quorum complex formation
kr_gANTISTARC14Comp gANTISTAR - C14 complex disassociation 10 1/min Assumed same as quorum complex formation
k_STAR Basal Rate of STAR production (without C4:C4R induction)
  • 1.91E-01
  • 3.08E-23
  • mRNA/min
  • mol/min
Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_iSTAR Rate of STAR production (after induction of C4:C4R)
  • 18.57
  • 3.08E-23
  • mRNA/min
  • mol/min
Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_ANTISTAR Basal Rate of ANTISTAR production (without C14:C14R induction) 1.91E-01 mRNA/min Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_iANTISTAR Rate of ANTI STAR production (after induction of C14:C14R) 18.57 mRNA/min Calculated from Bionumbers average transcription rate - RNA polymerase transcription
kf_STARANTISTAR STAR:ANTISTAR complex formation 62 complexes/min Calculated using DNA strand displacement (Winfree et al)
kr_STARANTISTAR STAR:ANTISTAR complex dissociation 2 1/min Calculated using DNA strand displacement (Winfree et al)
kf_STARAD1 STAR:AD1 Complex formation 62 complexes/min Calculated using DNA strand displacement (Winfree et al)
kr_STARAD1 STAR:AD1 Complex dissociation 2 1/min Calculated using DNA strand displacement (Winfree et al)
Table 8: Gp0.4 Module Numbers Table
Parameter name Description Value Unit Source
k_mGP0.4 Transcription of mGP0.4 before STAR induction 0.086 mRNA/min Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_imGP0.4 Transcription of mGP0.4 after STAR induction 8.08 mRNA/min Calculated from Bionumbers average transcription rate - RNA polymerase transcription
kf_GP0.4Ftsz GP0.4:Ftsz complex formation 9.44E03 1/molecules.min
kr_GP0.4Ftsz GP0.4:Ftsz complex dissociation 30 1/min
k_GP0.4 Translation of GP0.4 13.86 Protein/min Calculated from Bionumbers average translation rate : Bremer et al
Table 9: Tet Module Numbers Table
Parameter name Description Value Unit Source
k_mTET Basal transcription of TET 0.028 mRNA/min Calculated from experimental results for STAR activation (94 fold activation)
k_imTET Induced transcription of TET 2.7 mRNA/min
k_TET:pTET TET:pTET complex formation 120 1/molecules.min https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1
k_-TET:pTET TET:pTET complex dissassociation 8.40E05 1/min https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1
Table 10: LeuB Module Numbers Table
Parameter name Description Value Unit Source
k_mLeuB Basal transcription of LeuB transcription 1.538 mRNA/min Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_imLeuB Induced transcription of LeuB transcription 0.015 mRNA/min 99% Repression from tet was assumed
k_LeuB Translation of LeuB 0.0218 molecule/min http://biocyc.org/gene?orgid=ECOLI&id=3-ISOPROPYLMALDEHYDROG-MONOMER#tab=FTRS
Table 11: CAT Module Numbers Table
Parameter name Description Value Unit Source
k_mCAT Basal transcription of CAT transcription 1.875 mRNA/min Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_imCAT Induced transcription of CAT transcription 0.018 mRNA/min 99% Repression from CAT was assumed
k_CAT Translation of CAT 0.03568 molecule/min http://www.uniprot.org/uniprot/P62577
Table 12: GP2 Module Numbers Table
Parameter name Description Value Unit Source
k_mGP2 Transcription of mGP2 before STAR induction - Basal 0.07 mRNA/min Calculated using 94 fold activation
k_imGP2 Transcription of mGP2 after STAR induction (7.2 kDa) 6.56 mRNA/min Calculated from Bionumbers average transcription rate - RNA polymerase transcription
k_GP2RNAP GP2:RNAP complex formation 1/Mole.min Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7
k_-GP2RNAP GP2:RNAP complex dissociation 1/min Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7
k_GP2 Translation of GP2 11.2 Protein/min Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7
RNA Total RNA pol 1800 molecules/cell Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7
k_mRNAP Transcription of RNA pol 2400 nucleotides/min.RNAP Intracellular Kinetics of a Growing Virus: A Genetically Structured Simulation for Bacteriophage T7